scholarly journals The heterogeneity of Type Ia supernova progenitor systems and their use as cosmic distance indicators

2012 ◽  
Vol 8 (S289) ◽  
pp. 329-329
Author(s):  
Paul Ricker ◽  
Kuo-Chuan Pan ◽  
Ronald Taam

AbstractPopulation synthesis modeling of Type Ia supernova (SN Ia) progenitors suggests that multiple binary evolution channels may give rise to SNe Ia. Independently of the ignition mechanism, the type of progenitor system involved affects the circumstellar environment into which the explosion propagates, as well as the amount of solid angle blocked by the companion (for single-degenerate models). Using three-dimensional adaptive-mesh simulations of SNe Ia in binary systems, we discuss the effects of the progenitor system on the observable characteristics of SNe Ia and the impact of these effects on systematic errors in the use of SNe Ia as cosmic distance indicators.

2006 ◽  
Vol 2 (14) ◽  
pp. 308-309
Author(s):  
Friedrich K. Röpke

AbstractKeeping up with ever more detailed observations, Type Ia supernova (SN Ia) explosion models have seen a brisk development over the past years. The aim is to construct a self-consistent picture of the physical processes in order to gain the predictive power necessary to answer questions arising from the application of SNe Ia as cosmological distance indicators. We review recent developments in modeling these objects focusing on three-dimensional simulations.


2020 ◽  
Vol 641 ◽  
pp. A20
Author(s):  
Zhengwei Liu ◽  
Richard J. Stancliffe

The nature of the progenitors of type Ia supernovae (SNe Ia) remains a mystery. Binary systems consisting of a white dwarf (WD) and a main-sequence (MS) donor are potential progenitors of SNe Ia, in which a thermonuclear explosion of the WD may occur when its mass reaches the Chandrasekhar limit during accretion of material from a companion star. In the present work, we address theoretical rates and delay times of a specific MS donor channel to SNe Ia, in which a helium (He) star + MS binary produced from a common envelope event subsequently forms a WD + MS system without the He star undergoing mass transfer by Roche lobe overflow. By combining the results of self-consistent binary evolution calculations with population synthesis models, we find that the contribution of SNe Ia in this channel is around 2.0 × 10−4 yr−1. In addition, we find that delay times of SNe Ia in this channel cover a range of about 1.0–2.6 Gyr, and almost all SNe Ia produced in this way (about 97%) have a delay time of ≳1 Gyr. While the rate of SN Ia in this work is about 10% of the overall SN Ia rate, the channel represents a possible contribution to the old population (1–3 Gyr) of observed SNe Ia.


2019 ◽  
Vol 627 ◽  
pp. A14 ◽  
Author(s):  
P. Neunteufel ◽  
S.-C. Yoon ◽  
N. Langer

Context. Helium accretion induced explosions in CO white dwarfs (WDs) are considered promising candidates for a number of observed types of stellar transients, including supernovae (SNe) of Type Ia and Type Iax. However, a clear favorite outcome has not yet emerged. Aims. We explore the conditions of helium ignition in the WD and the final fates of helium star-WD binaries as functions of their initial orbital periods and component masses. Methods. We computed 274 model binary systems with the Binary Evolution Code, in which both components are fully resolved. Both stellar and orbital evolution were computed including mass and angular momentum transfer, tides, gravitational wave emission, differential rotation, and internal hydrodynamic and magnetic angular momentum transport. We worked out the parts of the parameter space leading to detonations of the accreted helium layer on the WD, likely resulting in the complete disruption of the WD to deflagrations, where the CO core of the WD may remain intact and where helium ignition in the WD is avoided. Results. We find that helium detonations are expected only in systems with the shortest initial orbital periods, and for initially massive WDs (MWD ≥ 1.0 M⊙) and lower mass donors (Mdonor ≤ 0.8 M⊙), which have accumulated helium layers mostly exceeding 0.1 M⊙. Upon detonation, these systems would release the donor as a hypervelocity pre-WD runaway star, for which we predict the expected range of kinematic and stellar properties. Systems with more massive donors or initial periods exceeding 1.5 h likely undergo helium deflagrations after accumulating 0.1 − 0.001 M⊙ of helium. Helium ignition in the WD is avoided in systems with helium donor stars below ∼0.6 M⊙, and leads to three distinctly different groups of double WD systems. Conclusions. The size of the parameter space open to helium detonation corresponds to only about 3% of the galactic SN Ia rate and to 10% of the SN Iax rate, while the predicted large amounts of helium (0.1 M⊙) in progenitors cannot easily be reconciled with observations of archetypical SN Ia. However, the transients emerging from these systems may contribute significantly to massive helium novae, calcium-rich SNe Ib, and, potentially, very close double degenerate systems that may eventually produce either ordinary or peculiar SNe Ia, or, for the smallest considered masses, R Coronae Borealis stars.


2011 ◽  
Vol 7 (S281) ◽  
pp. 240-243
Author(s):  
Maxwell Moe ◽  
Rosanne Di Stefano

AbstractComputing the rate of Type Ia supernovae (SNe Ia) from first principles is difficult because there are large uncertainties regarding several key binary processes such as common envelope evolution, tidal interactions, and the efficiency of mass transfer. Fortunately, a range of observational parameters of binaries in intermediate stages of evolution can help us model these processes in a way that is likely to mirror the true binary evolution. We discuss how this observationally-motivated approach may have the effect of increasing the predicted rate of single degenerate progenitors of SNe Ia, while simultaneously decreasing the number of double degenerate progenitors.


2011 ◽  
Vol 7 (S281) ◽  
pp. 225-231 ◽  
Author(s):  
Gijs Nelemans ◽  
Silvia Toonen ◽  
Madelon Bours

AbstractWe briefly discuss the method of population synthesis to calculate theoretical delay time distributions of Type Ia supernova progenitors. We also compare the results of different research groups and conclude that, although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this alone cannot explain all the differences.


2013 ◽  
Vol 774 (1) ◽  
pp. 37 ◽  
Author(s):  
Zheng-Wei Liu ◽  
R. Pakmor ◽  
I. R. Seitenzahl ◽  
W. Hillebrandt ◽  
M. Kromer ◽  
...  

2020 ◽  
Vol 645 ◽  
pp. A6
Author(s):  
E. Zapartas ◽  
S. E. de Mink ◽  
S. Justham ◽  
N. Smith ◽  
M. Renzo ◽  
...  

The majority of massive stars, which are the progenitors of core-collapse supernovae (SNe), are found in close binary systems. In a previous work, we modeled the fraction of hydrogen-rich, Type II SN progenitors whose evolution is affected by mass exchange with their companion, finding this to be between ≈1/3 and 1/2 for most assumptions. Here we study in more depth the impact of this binary history of Type II SN progenitors on their final pre-SN core mass distribution, using population synthesis simulations. We find that binary star progenitors of Type II SNe typically end their life with a larger core mass than they would have had if they had lived in isolation because they gained mass or merged with a companion before their explosion. The combination of the diverse binary evolutionary paths typically leads to a marginally shallower final core mass distribution. In discussing our results in the context of the red supergiant problem, that is, the reported lack of detected high luminosity progenitors, we conclude that binary evolution does not seem to significantly affect the issue. This conclusion is quite robust against our variations in the assumptions of binary physics. We also predict that inferring the initial masses of Type II SN progenitors by “age-dating” their surrounding environment systematically yields lower masses compared to methods that probe the pre-SN core mass or luminosity. A robust discrepancy between the inferred initial masses of a SN progenitor from those different techniques could indicate an evolutionary history of binary mass accretion or merging.


2018 ◽  
Vol 868 (1) ◽  
pp. 21 ◽  
Author(s):  
C. E. Harris ◽  
P. E. Nugent ◽  
A. Horesh ◽  
J. S. Bright ◽  
R. P. Fender ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document