energy emissions
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 43)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Vol 13 (24) ◽  
pp. 13969
Author(s):  
Paulina A. Phophe ◽  
Mmoto L. Masubelele

Nature-based conservation management (NBCMs) estates are seen as natural solutions to climate change and hence immune to harmful greenhouse gas (GHG) emissions. However, NBCMs, in their daily operations to protect and conserve biodiversity, may result in GHG emissions. These may come as a significant carbon burden. This is the first study based on a literature review to look at the carbon footprint of an entire conservation estate operation and management. South African National Parks (SANParks) aimed to contribute to national targets by reducing their fossil-fuel-generated energy consumption by 2% per year until achieving carbon neutrality. The objectives of this paper were (1) to quantify the SANParks C emissions profile at the organization and individual park level and develop recommendations to sustainably reduce carbon emissions and (2) to suggest alternative scenarios that SANParks could follow to achieve zero energy emissions. The study presented an audit analysis of the emission sources linked to SANParks’ daily activities over a five-year period (2015–2019) using the GHGs protocol corporate accounting and reporting standard methodology. Over the reference period, SANParks emitted an average of 73,732 t of carbon dioxide equivalent (tCO2e) per year. Most emissions came from electricity usage, 40,681 tCO2e (55%), followed by fuel usage for stationary combustion at 26,088 tCO2e (35%), and both account for 90% of SANParks’ total emissions. Results have shown the variation amongst individual parks in GHG emission and intensity ratio among the different parks. Total SANParks emission showed a significant relationship with Scope 2, followed by number of employees, building size, Scope 3, and Scope 1, in order. This work recommends how SANParks estate may reduce their carbon emissions at a national and individual level. SANParks achieved 1% year-on-year energy emissions reduction through its renewable base; however, an ambitious target of 8% would be appropriate for a 1.5 °C future based on the energy scenario planning.


2021 ◽  
Author(s):  
◽  
J. Andrew Alcorn

<p>"How do you build a sustainable house in New Zealand? - is it even possible?" This thesis is structured in three parts to answer this question. The first part asks, then answers, "What is sustainability?", "How do you measure sustainability?" and "How do you know when you have reached sustainability - what is its limit?" The second part describes the methodologies for conducting embodied energy and CO2 analysis. The third part applies the results of the sustainability definition, and the energy and CO2 methodologies to a series of house designs. Part 1 defines, measures, and establishes a limit for sustainability. It reviews the history of sustainability and sustainable development. A distillation of what is being sought by the various parties to the sustainability debate then contributes to a checklist of essential requirements for a functional definition of sustainability. Addressing climate change is shown to be the major requirement. The checklist enables answers to the questions about measuring sustainability, and knowing when its limit has been reached, and leads to a functional definition: Sustainability meets the needs of the present without annual CO2 emissions exceeding what the planet can absorb. The requirements for sustainability indicator methods are examined. A robust way of comparing environment impacts is introduced. Several common sustainability indicators are examined against the requirements, but are found wanting, while two are found to be effective: energy and CO2 analysis. Human population and annual global carbon absorption are used to identify global and per-capita sustainability limits, which can be applied at many scales to many activities. They are applied to New Zealand's housing sector to identify a sustainable annual per-house emissions target, including construction, maintenance, and operation. Part 2 reviews the methodologies to measure and delimit sustainability using embodied energy and embodied CO2 analysis. A new, fast, accurate, and reliable process-based hybrid analysis method developed for this research is used to derive embodied energy and CO2 coefficients for building materials. Part 3 applies the results of the sustainability definition and limit, and the energy and CO2 methodologies and coefficients from analysing building materials, to a series of house designs within New Zealand and global contexts. A spreadsheet-based calculator developed for this analysis that has potential beyond this thesis is described. A method is presented for annualising emissions to fairly account for differing building components' lifetimes. Finally, a sustainable house is shown to be possible by combining several strategies to meet the challenging sustainable emissions target. Technologies that reduce grid electricity use - solar hot water, PV, and wind-generators - are crucial, cutting emissions the most. Bio-based materials sequestering carbon are the second most important strategy: strawbale insulation to ~R10, and timber for framing, cladding, windows, linings, and roofing. Efficient appliances, lighting, and other low-emission materials were also helpful. Other key outcomes were: hot water heating emits the most CO2, double any other category; heating energy emissions are smaller than any other category; CO2-optimal conventional insulation levels are ~R5; CO2 flux of materials is double operating energy CO2 for sustainable houses.</p>


2021 ◽  
Author(s):  
◽  
J. Andrew Alcorn

<p>"How do you build a sustainable house in New Zealand? - is it even possible?" This thesis is structured in three parts to answer this question. The first part asks, then answers, "What is sustainability?", "How do you measure sustainability?" and "How do you know when you have reached sustainability - what is its limit?" The second part describes the methodologies for conducting embodied energy and CO2 analysis. The third part applies the results of the sustainability definition, and the energy and CO2 methodologies to a series of house designs. Part 1 defines, measures, and establishes a limit for sustainability. It reviews the history of sustainability and sustainable development. A distillation of what is being sought by the various parties to the sustainability debate then contributes to a checklist of essential requirements for a functional definition of sustainability. Addressing climate change is shown to be the major requirement. The checklist enables answers to the questions about measuring sustainability, and knowing when its limit has been reached, and leads to a functional definition: Sustainability meets the needs of the present without annual CO2 emissions exceeding what the planet can absorb. The requirements for sustainability indicator methods are examined. A robust way of comparing environment impacts is introduced. Several common sustainability indicators are examined against the requirements, but are found wanting, while two are found to be effective: energy and CO2 analysis. Human population and annual global carbon absorption are used to identify global and per-capita sustainability limits, which can be applied at many scales to many activities. They are applied to New Zealand's housing sector to identify a sustainable annual per-house emissions target, including construction, maintenance, and operation. Part 2 reviews the methodologies to measure and delimit sustainability using embodied energy and embodied CO2 analysis. A new, fast, accurate, and reliable process-based hybrid analysis method developed for this research is used to derive embodied energy and CO2 coefficients for building materials. Part 3 applies the results of the sustainability definition and limit, and the energy and CO2 methodologies and coefficients from analysing building materials, to a series of house designs within New Zealand and global contexts. A spreadsheet-based calculator developed for this analysis that has potential beyond this thesis is described. A method is presented for annualising emissions to fairly account for differing building components' lifetimes. Finally, a sustainable house is shown to be possible by combining several strategies to meet the challenging sustainable emissions target. Technologies that reduce grid electricity use - solar hot water, PV, and wind-generators - are crucial, cutting emissions the most. Bio-based materials sequestering carbon are the second most important strategy: strawbale insulation to ~R10, and timber for framing, cladding, windows, linings, and roofing. Efficient appliances, lighting, and other low-emission materials were also helpful. Other key outcomes were: hot water heating emits the most CO2, double any other category; heating energy emissions are smaller than any other category; CO2-optimal conventional insulation levels are ~R5; CO2 flux of materials is double operating energy CO2 for sustainable houses.</p>


2021 ◽  
Vol 2042 (1) ◽  
pp. 012150
Author(s):  
Linus Walker ◽  
Alexandra Kuhn ◽  
Illias Hischier ◽  
Arno Schlueter

Abstract To decrease greenhouse gas emissions of the Swiss building stock, effective retrofit strategies are necessary. Due to the long-term operation of buildings, future developments and uncertainties need to be considered, which calls for assessing the robustness of retrofit decisions. Existing studies propose robustness metrics for decisions under deep uncertainty to be coupled with a scenario-based simulation approach. We review these metrics and present a simulation approach that includes current and future operational energy, emissions, and costs. We apply the seven identified metrics to retrofit decisions of a multifamily house located in Zurich, where future scenarios in terms of climate, occupancy, decarbonization, and cost development are included. The metrics are based on different assumptions and positions towards risk. We further find that the discriminatory power is different, confirming the Minimax Regret metric to be most suitable for the building context when looking at individual buildings. For the case study, we find that deep retrofit seems to be a robust decision from an environmental perspective. From a cost perspective, the electrification of the heating system with heat pumps and the installation of PV without a complete envelope retrofit proves to be most robust.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rahil Irfan Ahmed ◽  
Guohao Zhao ◽  
Naveed Ahmad ◽  
Umme Habiba

Purpose Corporate social responsibility (CSR) is a requirement for energy enterprises as different stakeholders deem environmental and social responsibility the duty. This study aims to explore the determinants that affect CSR disclosure in energy enterprises of developing nations. Design/methodology/approach Panel data of energy companies is used that are listed on Pakistan Stock Exchange. A comprehensive CSR disclosure index is developed using seven themes, i.e. environment, employees, energy, emissions, product, community development and other CSR-related activities. A random effect model of regression is used on the sample of data. Findings The finding of the study reveals that profitability, financial leverage, board size and being a multinational subsidiary has a significant relationship with CSR disclosure level. Research limitations/implications The sample is confined to a certain number of years and publicly traded energy companies. Further studies can explore the relationship of CSR among different groups of firms, such as SMEs, non-listed companies and state-run enterprises to document whether the findings are significant or not. The opinions and ideas of external stakeholders could also be explored using various qualitative methods such as interviews. Originality/value To the best of the authors’ knowledge, it is the first study of its kind whose only focus is energy sector enterprises. A comprehensive scale is used to measure CSR practices. It is helpful for upcoming studies to examine the various aspects of CSR research and figure sound outcome.


2021 ◽  
Vol 508 (1) ◽  
pp. 279-286
Author(s):  
Xiang-Han Cui ◽  
Cheng-Min Zhang ◽  
Di Li ◽  
Jian-Wei Zhang ◽  
Bo Peng ◽  
...  

ABSTRACT The properties of the young pulsars and their relations to the supernova remnants (SNRs) have been the interesting topics. At present, 383 SNRs in the Milky Way Galaxy have been published, which are associated with 64 radio pulsars and 46 pulsars with high-energy emissions. However, we noticed that 630 young radio pulsars with the spin periods of less than half a second have been not yet observed the SNRs surrounding or nearby them, which arises a question of that could the two types of young radio pulsars with/without SNRs hold the distinctive characteristics? Here, we employ the statistical tests on the two groups of young radio pulsars with (52) and without (630) SNRs to reveal if they share the different origins. Kolmogorov–Smirnov (K–S) and Mann–Whitney–Wilcoxon (M–W–W) tests indicate that the two samples have the different distributions with parameters of spin period (P), derivative of spin period ($\dot{P}$), surface magnetic field strength (B), and energy loss rate ($\dot{E}$). Meanwhile, the cumulative number ratio between the pulsars with and without SNRs at the different spin-down ages decreases significantly after $\rm 10\!-\!20\, kyr$. So we propose that the existence of the two types of supernovae (SNe), corresponding to their SNR lifetimes, which can be roughly ascribed to the low- and high-energy SNe. Furthermore, the low-energy SNe may be formed from the $\rm 8\!-\!12\, M_{\odot }$ progenitor, e.g. possibly experiencing the electron capture, while the main-sequence stars of $\rm 12\!-\!25\, M_{\odot }$ may produce the high-energy SNe probably by the iron core collapse.


2021 ◽  
Vol 147 ◽  
pp. 111210
Author(s):  
Pramit Verma ◽  
Tanu Kumari ◽  
Akhilesh Singh Raghubanshi

2021 ◽  
Vol 11 (5) ◽  
pp. 112-120
Author(s):  
Bosede Ngozi Adeleye ◽  
Darlington Akam ◽  
Nasiru Inuwa ◽  
Muftau Olarinde ◽  
Victoria Okafor

2021 ◽  
pp. 103054
Author(s):  
Alberto Cerezo-Narváez ◽  
José María Piñero-Vilela ◽  
Enrique Ángel Rodríguez-Jara ◽  
Manuel Otero-Mateo ◽  
Andrés Pastor-Fernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document