scholarly journals TeV γ-ray source MGRO J2019+37 : PWN or SNR?

2013 ◽  
Vol 9 (S296) ◽  
pp. 300-304
Author(s):  
Lab Saha ◽  
Pijushpani Bhattacharjee

AbstractMilagro has recently reported an extended TeV γ-ray source MGRO J2019+37 in the Cygnus region. It is the second brightest TeV source after Crab nebula in their source catalogue. No confirmed counterparts of this source are known although possible associations with several known sources have been suggested. We study leptonic as well as hadronic models of TeV emission within the context of Pulsar Wind Nebulae (PWN) and Supernova Remnant (SNR) type sources, using constraints from multi-wavelength data from observations made on sources around MGRO J2019+37. These include radio upper limit given by GMRT, GeV observations by Fermi-LAT, EGRET and AGILE and very high energy data taken from Milagro. We find that, within the PWN scenario, while both leptonic as well as hadronic models can explain the TeV flux from this source, the GMRT upper limit imposes a stringent upper limit on the size of the emission region in the case of leptonic model. In the SNR scenario, on the other hand, a purely leptonic origin of TeV flux is inconsistent with the GMRT upper limit. At the same time, a dominantly hadronic origin of the TeV flux is consistent with all observations, and the required hadronic energy budget is comparable to that of typical supernovae explosions.

2020 ◽  
Vol 494 (4) ◽  
pp. 5590-5602
Author(s):  
H Abdalla ◽  
R Adam ◽  
F Aharonian ◽  
F Ait Benkhali ◽  
E O Angüner ◽  
...  

ABSTRACT We report on the detection of very high energy (VHE; E > 100 GeV) γ-ray emission from the BL Lac objects KUV 00311−1938 and PKS 1440−389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE γ-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311−1938 of $z$ < 0.98 and of PKS 1440−389 of $z$ < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311−1938 is constrained to 0.51 ≤ $z$ < 0.98 and of PKS 1440−389 to 0.14 ⪅ $z$ < 0.53.


2014 ◽  
Vol 782 (1) ◽  
pp. 13 ◽  
Author(s):  
E. Aliu ◽  
S. Archambault ◽  
T. Arlen ◽  
T. Aune ◽  
B. Behera ◽  
...  

2002 ◽  
Vol 17 (3) ◽  
pp. 293-318 ◽  
Author(s):  
F. Arqueros ◽  
J. Ballestrin ◽  
M. Berenguel ◽  
D.M. Borque ◽  
E.F. Camacho ◽  
...  

2012 ◽  
Vol 746 (2) ◽  
pp. 151 ◽  
Author(s):  
A. Abramowski ◽  
F. Acero ◽  
F. Aharonian ◽  
A. G. Akhperjanian ◽  
G. Anton ◽  
...  

2009 ◽  
Vol 499 (1) ◽  
pp. 273-277 ◽  
Author(s):  
F. Aharonian ◽  
A. G. Akhperjanian ◽  
G. Anton ◽  
U. Barres de Almeida ◽  
A. R. Bazer-Bachi ◽  
...  

2013 ◽  
Vol 777 (1) ◽  
pp. L18 ◽  
Author(s):  
Y. T. Tanaka ◽  
C. C. Cheung ◽  
Y. Inoue ◽  
Ł. Stawarz ◽  
M. Ajello ◽  
...  

2018 ◽  
Vol 861 (2) ◽  
pp. 134 ◽  
Author(s):  
A. U. Abeysekara ◽  
A. Archer ◽  
T. Aune ◽  
W. Benbow ◽  
R. Bird ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 421
Author(s):  
Mathieu de Naurois

Thirty years after the discovery of the first very-high-energy γ-ray source by the Whipple telescope, the field experienced a revolution mainly driven by the third generation of imaging atmospheric Cherenkov telescopes (IACTs). The combined use of large mirrors and the invention of the imaging technique at the Whipple telescope, stereoscopic observations, developed by the HEGRA array and the fine-grained camera, pioneered by the CAT telescope, led to a jump by a factor of more than ten in sensitivity. The advent of advanced analysis techniques led to a vast improvement in background rejection, as well as in angular and energy resolutions. Recent instruments already have to deal with a very large amount of data (petabytes), containing a large number of sources often very extended (at least within the Galactic plane) and overlapping each other, and the situation will become even more dramatic with future instruments. The first large catalogues of sources have emerged during the last decade, which required numerous, dedicated observations and developments, but also made the first population studies possible. This paper is an attempt to summarize the evolution of the field towards the building up of the source catalogues, to describe the first population studies already made possible, and to give some perspectives in the context of the upcoming, new generation of instruments.


Sign in / Sign up

Export Citation Format

Share Document