scholarly journals Transport of angular momentum in solar-like oscillating stars

2013 ◽  
Vol 9 (S301) ◽  
pp. 161-168
Author(s):  
Mariejo Goupil ◽  
Sébastien Deheuvels ◽  
Joao Marques ◽  
Yveline Lebreton ◽  
Benoit Mosser ◽  
...  

AbstractOur current understanding and modeling of angular momentum transport in low-mass stars are briefly reviewed. Emphasis is set on single stars slightly younger that the Sun and on subgiants and red giants observed by the space missionsCoRoTandKepler.

2014 ◽  
Vol 788 (1) ◽  
pp. 93 ◽  
Author(s):  
Matteo Cantiello ◽  
Christopher Mankovich ◽  
Lars Bildsten ◽  
Jørgen Christensen-Dalsgaard ◽  
Bill Paxton

In most discussions of the formation of the Solar System, the early Sun is assumed to have possessed the bulk of the angular momentum of the system, and a closely surrounding disc of gas was spun out, which, through magnetic coupling, acquired a progressively larger proportion of the total angular momentum. There are difficulties with this model in accounting for the inclined axis of the Sun, the magnitude of the magnetic coupling required, and the nucleogenetic variations recently observed in the Solar System. Another possibility exists, namely that of a slowly contracting disc of interstellar material, leading to the formation of both a central star and a protoplanetary disc. In this model one can better account for the tilt of the Sun’s axis and the lack of mixing necessary to account for the nucleogenetic evidence. The low angular momentum of the Sun and of other low mass stars is then seen as resulting from a slow build-up as a degenerate dwarf, acquiring orbital material at a low specific angular momentum. When the internal temperature reaches the threshold for hydrogen burning, the star expands to the Main Sequence and is now a slow rotator. More massive stars would spin quickly because they had to acquire orbiting material after the expansion, and therefore at a high specific angular momentum. A process of gradual inward spiralling may also allow materials derived from different sources to accumulate into solid bodies, and be placed on a great variety of orbits in the outer reaches of the system, setting up the cometary cloud of uneven nucleogenetic composition.


2019 ◽  
Vol 631 ◽  
pp. A77 ◽  
Author(s):  
L. Amard ◽  
A. Palacios ◽  
C. Charbonnel ◽  
F. Gallet ◽  
C. Georgy ◽  
...  

Aims.We present an extended grid of state-of-the art stellar models for low-mass stars including updated physics (nuclear reaction rates, surface boundary condition, mass-loss rate, angular momentum transport, rotation-induced mixing, and torque prescriptions). We evaluate the impact of wind braking, realistic atmospheric treatment, rotation, and rotation-induced mixing on the structural and rotational evolution from the pre-main sequence (PMS) to the turn-off.Methods.Using the STAREVOL code, we provide an updated PMS grid. We computed stellar models for seven different metallicities, from [Fe/H] = −1 dex to [Fe/H] = +0.3 dex with a solar composition corresponding toZ = 0.0134. The initial stellar mass ranges from 0.2 to 1.5M⊙with extra grid refinement around one solar mass. We also provide rotating models for three different initial rotation rates (slow, median, and fast) with prescriptions for the wind braking and disc-coupling timescale calibrated on observed properties of young open clusters. The rotational mixing includes the most recent description of the turbulence anisotropy in stably stratified regions.Results.The overall behaviour of our models at solar metallicity, and their constitutive physics, are validated through a detailed comparison with a variety of distributed evolutionary tracks. The main differences arise from the choice of surface boundary conditions and initial solar composition. The models including rotation with our prescription for angular momentum extraction and self-consistent formalism for angular momentum transport are able to reproduce the rotation period distribution observed in young open clusters over a wide range of mass values. These models are publicly available and can be used to analyse data coming from present and forthcoming asteroseismic and spectroscopic surveys such asGaia, TESS, and PLATO.


2014 ◽  
Vol 9 (S307) ◽  
pp. 165-170
Author(s):  
P. Eggenberger

AbstractAsteroseismic data obtained by theKeplerspacecraft have led to the recent detection and characterization of rotational frequency splittings of mixed modes in red-giant stars. This has opened the way to the determination of the core rotation rates for these stars, which is of prime importance to progress in our understanding of internal angular momentum transport. In this contribution, we discuss which constraints can be brought by these asteroseismic measurements on the modelling of angular momentum transport in stellar radiative zones.


2018 ◽  
Vol 620 ◽  
pp. A146 ◽  
Author(s):  
B. Cseh ◽  
M. Lugaro ◽  
V. D’Orazi ◽  
D. B. de Castro ◽  
C. B. Pereira ◽  
...  

Context. Barium (Ba) stars are dwarf and giant stars enriched in elements heavier than iron produced by the slow neutron-capture process (s process). These stars belong to binary systems in which the primary star evolved through the asymptotic giant branch (AGB) phase. During this phase the primary star produced s-process elements and transferred them onto the secondary, which is now observed as a Ba star. Aims. We compare the largest homogeneous set of Ba giant star observations of the s-process elements Y, Zr, La, Ce, and Nd with AGB nucleosynthesis models to reach a better understanding of the s process in AGB stars. Methods. By considering the light-s (ls: Y and Zr) heavy-s (hs: La, Ce, and Nd) and elements individually, we computed for the first time quantitative error bars for the different hs-element to ls-element abundance ratios, and for each of the sample stars. We compared these ratios to low-mass AGB nucleosynthesis models. We excluded La from our analysis because the strong La lines in some of the sample stars cause an overestimation and unreliable abundance determination, as compared to the other observed hs-type elements. Results. All the computed hs-type to ls-type element ratios show a clear trend of increasing with decreasing metallicity with a small spread (less than a factor of 3). This trend is predicted by low-mass AGB models in which 13C is the main neutron source. The comparison with rotating AGB models indicates the need for the presence of an angular momentum transport mechanism that should not transport chemical species, but significantly reduces the rotational speed of the core in the advanced stellar evolutionary stages. This is an independent confirmation of asteroseismology observations of the slow down of core rotation in giant stars, and of rotational velocities of white dwarfs lower than predicted by models without an extra angular momentum transport mechanism.


2017 ◽  
Vol 599 ◽  
pp. A18 ◽  
Author(s):  
P. Eggenberger ◽  
N. Lagarde ◽  
A. Miglio ◽  
J. Montalbán ◽  
S. Ekström ◽  
...  

2020 ◽  
Vol 641 ◽  
pp. A117 ◽  
Author(s):  
S. Deheuvels ◽  
J. Ballot ◽  
P. Eggenberger ◽  
F. Spada ◽  
A. Noll ◽  
...  

Context. Asteroseismic measurements of the internal rotation of subgiants and red giants all show the need for invoking a more efficient transport of angular momentum than theoretically predicted. Constraints on the core rotation rate are available starting from the base of the red giant branch (RGB) and we are still lacking information on the internal rotation of less evolved subgiants. Aims. We identify two young Kepler subgiants, KIC 8524425 and KIC 5955122, whose mixed modes are clearly split by rotation. We aim to probe their internal rotation profile and assess the efficiency of the angular momentum transport during this phase of the evolution. Methods. Using the full Kepler data set, we extracted the mode frequencies and rotational splittings for the two stars using a Bayesian approach. We then performed a detailed seismic modeling of both targets and used the rotational kernels to invert their internal rotation profiles using the MOLA inversion method. We thus obtained estimates of the average rotation rates in the g-mode cavity (⟨Ω⟩g) and in the p-mode cavity (⟨Ω⟩p). Results. We found that both stars are rotating nearly as solid bodies, with core-envelope contrasts of ⟨Ω⟩g/⟨Ω⟩p = 0.68 ± 0.47 for KIC 8524425 and ⟨Ω⟩g/⟨Ω⟩p = 0.72 ± 0.37 for KIC 5955122. This result shows that the internal transport of angular momentum has to occur faster than the timescale at which differential rotation is forced in these stars (between 300 Myr and 600 Myr). By modeling the additional transport of angular momentum as a diffusive process with a constant viscosity νadd, we found that values of νadd >  5 × 104 cm2 s−1 are required to account for the internal rotation of KIC 8524425, and νadd >  1.5 × 105 cm2 s−1 for KIC 5955122. These values are lower than or comparable to the efficiency of the core-envelope coupling during the main sequence, as given by the surface rotation of stars in open clusters. On the other hand, they are higher than the viscosity needed to reproduce the rotation of subgiants near the base of the RGB. Conclusions. Our results yield further evidence that the efficiency of the internal redistribution of angular momentum decreases during the subgiant phase. We thus bring new constraints that will need to be accounted for by mechanisms that are proposed as candidates for angular momentum transport in subgiants and red giants.


Sign in / Sign up

Export Citation Format

Share Document