scholarly journals Lessons from comparisons between the nuclear region of the Milky Way and those in nearby spirals

2013 ◽  
Vol 9 (S303) ◽  
pp. 61-65
Author(s):  
John S. Gallagher ◽  
Tova M. Yoast-Hull ◽  
Ellen G. Zweibel

AbstractThe Milky Way appears as a typical barred spiral, and comparisons can be made between its nuclear region and those of structurally similar nearby spirals. Maffei 2, M83, IC 342 and NGC 253 are nearby systems whose nuclear region properties contrast with those of the Milky Way. Stellar masses derived from NIR photometery, molecular gas masses and star formation rates allow us to assess the evolutionary states of this set of nuclear regions. These data suggest similarities between nuclear regions in terms of their stellar content while highlighting significant differences in current star formation rates. In particular current star formation rates appear to cover a larger range than expected based on the molecular gas masses. This behavior is consistent with nuclear region star formation experiencing episodic variations. Under this hypothesis the Milky Way's nuclear region currently may be in a low star formation rate phase.

Author(s):  
James R Allison

Abstract Evolution of the cosmic star formation rate (SFR) and molecular mass density is expected to be matched by a similarly strong evolution of the fraction of atomic hydrogen (H i) in the cold neutral medium (CNM). We use results from a recent commissioning survey for intervening 21-cm absorbers with the Australian Square Kilometre Array Pathfinder (ASKAP) to construct a Bayesian statistical model of the NHI-weighted harmonic mean spin temperature (Ts) at redshifts between z = 0.37 and 1.0. We find that Ts ≤ 274 K with 95 per cent probability, suggesting that at these redshifts the typical H i gas in galaxies at equivalent DLA column densities may be colder than the Milky Way interstellar medium (Ts, MW ∼ 300 K). This result is consistent with an evolving CNM fraction that mirrors the molecular gas towards the peak in SFR at z ∼ 2. We expect that future surveys for H i 21-cm absorption with the current SKA pathfinder telescopes will be able to provide constraints on the CNM fraction that are an order of magnitude greater than presented here.


2015 ◽  
Vol 10 (S314) ◽  
pp. 8-15
Author(s):  
Charles J. Lada

AbstractStudies of molecular clouds and young stars near the sun have provided invaluable insights into the process of star formation. Indeed, much of our physical understanding of this topic has been derived from such studies. Perhaps the two most fundamental problems confronting star formation research today are: 1) determining the origin of stellar mass and 2) deciphering the nature of the physical processes that control the star formation rate in molecular gas. As I will briefly outline here, observations and studies of local star forming regions are making particularly significant contributions toward the solution of both these important problems.


2011 ◽  
Vol 7 (S284) ◽  
pp. 218-220
Author(s):  
Myriam A. Rodrigues ◽  
François Hammer ◽  
Mathieu Puech

AbstractIn starburst galaxies, the light emitted by the young and massive stars dominates the photon budget along most of the SED and hides the old and intermediate stellar populations. The fraction of old stars and the stellar mass are systematically underestimated by current methods (Wuyts et al. (2009)). We have implemented a new method to retrieve stellar masses and stellar populations in distant galaxies from photometry and spectral features. The method uses a complex SFH description and a new constraint has been introduced: the star-formation rate (SFR).


Author(s):  
Angus Mok ◽  
Christine Wilson

AbstractWe studied molecular gas properties in a sample of 98 Hi - flux selected spiral galaxies within ~ 25 Mpc using the CO J = 3 − 2 line, observed with the JCMT, and subdivided into isolated, group, and Virgo subsamples. We find a larger mean H2 mass in the Virgo galaxies compared to group galaxies, despite their lower mean Hi mass. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have a longer molecular gas depletion times compared to group galaxies, perhaps due to heating processes in the cluster environment or differences in the turbulent pressure.


2018 ◽  
Vol 483 (1) ◽  
pp. 744-766 ◽  
Author(s):  
James W Trayford ◽  
Carlos S Frenk ◽  
Tom Theuns ◽  
Joop Schaye ◽  
Camila Correa

2019 ◽  
Vol 15 (S352) ◽  
pp. 99-102
Author(s):  
Joel Leja ◽  
Benjamin D. Johnson ◽  
Charlie Conroy ◽  
Pieter van Dokkum ◽  
Joshua S. Speagle ◽  
...  

AbstractGalaxies are complicated physical systems which obey complex scaling relationships; as a result, properties measured from broadband photometry are often highly correlated, degenerate, or both. Therefore, the accuracy of basic properties like stellar masses and star formation rates (SFRs) depend on the accuracy of many second-order galaxy properties, including star formation histories (SFHs), stellar metallicities, dust properties, and many others. Here, we re-assess measurements of galaxy stellar masses and SFRs using a 14-parameter physical model built in the Prospector Bayesian inference framework. We find that galaxies are ∼0.2 dex more massive and have ∼0.2 dex lower star formation rates than classic measurements. These measurements lower the observed cosmic star formation rate density and increase the observed buildup of stellar mass, finally bringing these two metrics into agreement at the factor-of-two level at 0.5 < z < 2.5.


2012 ◽  
Vol 10 (H16) ◽  
pp. 341-341
Author(s):  
Jonathan Braine

AbstractThe physical and chemical evolution of galaxies is intimately linked to star formation, We present evidence that molecular gas (H2) is transformed into stars more quickly in smaller and/or subsolar metallicity galaxies than in large spirals – which we consider to be equivalent to a star formation efficiency (SFE). In particular, we show that this is not due to uncertainties in the N(H2)/Ico conversion factor. Several possible reasons for the high SFE in galaxies like the nearby M33 or NGC 6822 are proposed which, separately or together, are the likely cause of the high SFE in this environment. We then try to estimate how much this could contribute to the increase in cosmic star formation rate density from z = 0 to z = 1.


2020 ◽  
Vol 499 (1) ◽  
pp. 948-956
Author(s):  
S M Randriamampandry ◽  
M Vaccari ◽  
K M Hess

ABSTRACT We investigate the relationship between the environment and the galaxy main sequence (the relationship between stellar mass and star formation rate), as well as the relationship between the environment and radio luminosity ($P_{\rm 1.4\, GHz}$), to shed new light on the effects of the environment on galaxies. We use the VLA-COSMOS 3-GHz catalogue, which consists of star-forming galaxies and quiescent galaxies (active galactic nuclei) in three different environments (field, filament, cluster) and for three different galaxy types (satellite, central, isolated). We perform for the first time a comparative analysis of the distribution of star-forming galaxies with respect to the main-sequence consensus region from the literature, taking into account galaxy environment and using radio observations at 0.1 ≤ z ≤ 1.2. Our results corroborate that the star formation rate is declining with cosmic time, which is consistent with the literature. We find that the slope of the main sequence for different z and M* bins is shallower than the main-sequence consensus, with a gradual evolution towards higher redshift bins, irrespective of environment. We see no trends for star formation rate in either environment or galaxy type, given the large errors. In addition, we note that the environment does not seem to be the cause of the flattening of the main sequence at high stellar masses for our sample.


2015 ◽  
Vol 11 (S319) ◽  
pp. 129-129
Author(s):  
Xiaoyu Kang ◽  
Fenghui Zhang ◽  
Ruixiang Chang

AbstractA simple model for M51a is constructed to explore its evolutionary history by assuming its disk grows from continuous gas infall, which is shaped by a free parameter-the infall-peak time tp. By adopting a constant infall-peak time tp = 7.0Gyr, our model predictions can reproduce most of the observed constraints and still show that the disk of M51a forms inside-out. Our results also show that the current molecular gas surface density, the star-formation rate and the UV-band surface brightness are important quantities to trace the effect of recent interactions on galactic star-formation process.


2011 ◽  
Vol 7 (S284) ◽  
pp. 292-296 ◽  
Author(s):  
Elisabete da Cunha ◽  
Stéphane Charlot ◽  
Loretta Dunne ◽  
Dan Smith ◽  
Kate Rowlands

AbstractWe present a simple, physically-motivated model to interpret consistently the emission from galaxies at ultraviolet, optical and infrared wavelengths. We combine this model with a Bayesian method to obtain robust statistical constraints on key parameters describing the stellar content, star formation activity and dust content of galaxies. Our model is now publicly available via a user-friendly code package, MAGPHYS at www.iap.fr/magphys. We present an application of this model to interpret a sample of ~1400 local (z<0.5) galaxies from the H-ATLAS survey. We find that, for these galaxies, the diffuse interstellar medium, powered mainly by stars older than 10 Myr, accounts for about half the total infrared luminosity. We discuss the implications of this result to the use of star formation rate indicators based on total infrared luminosity.


Sign in / Sign up

Export Citation Format

Share Document