scholarly journals The star formation rate and stellar content contributions of morphological components in the EAGLE simulations

2018 ◽  
Vol 483 (1) ◽  
pp. 744-766 ◽  
Author(s):  
James W Trayford ◽  
Carlos S Frenk ◽  
Tom Theuns ◽  
Joop Schaye ◽  
Camila Correa
2011 ◽  
Vol 7 (S284) ◽  
pp. 292-296 ◽  
Author(s):  
Elisabete da Cunha ◽  
Stéphane Charlot ◽  
Loretta Dunne ◽  
Dan Smith ◽  
Kate Rowlands

AbstractWe present a simple, physically-motivated model to interpret consistently the emission from galaxies at ultraviolet, optical and infrared wavelengths. We combine this model with a Bayesian method to obtain robust statistical constraints on key parameters describing the stellar content, star formation activity and dust content of galaxies. Our model is now publicly available via a user-friendly code package, MAGPHYS at www.iap.fr/magphys. We present an application of this model to interpret a sample of ~1400 local (z<0.5) galaxies from the H-ATLAS survey. We find that, for these galaxies, the diffuse interstellar medium, powered mainly by stars older than 10 Myr, accounts for about half the total infrared luminosity. We discuss the implications of this result to the use of star formation rate indicators based on total infrared luminosity.


2013 ◽  
Vol 9 (S303) ◽  
pp. 61-65
Author(s):  
John S. Gallagher ◽  
Tova M. Yoast-Hull ◽  
Ellen G. Zweibel

AbstractThe Milky Way appears as a typical barred spiral, and comparisons can be made between its nuclear region and those of structurally similar nearby spirals. Maffei 2, M83, IC 342 and NGC 253 are nearby systems whose nuclear region properties contrast with those of the Milky Way. Stellar masses derived from NIR photometery, molecular gas masses and star formation rates allow us to assess the evolutionary states of this set of nuclear regions. These data suggest similarities between nuclear regions in terms of their stellar content while highlighting significant differences in current star formation rates. In particular current star formation rates appear to cover a larger range than expected based on the molecular gas masses. This behavior is consistent with nuclear region star formation experiencing episodic variations. Under this hypothesis the Milky Way's nuclear region currently may be in a low star formation rate phase.


2018 ◽  
Vol 620 ◽  
pp. A112 ◽  
Author(s):  
S. Bianchi ◽  
P. De Vis ◽  
S. Viaene ◽  
A. Nersesian ◽  
A. V. Mosenkov ◽  
...  

Aims. We aim to study the fraction of stellar radiation absorbed by dust, fabs, in 814 galaxies of different morphological types. The targets constitute the vast majority (93%) of the DustPedia sample, including almost all large (optical diameter larger than 1′), nearby (v ≤ 3000 km s−1) galaxies observed with the Herschel Space Observatory. Methods. For each object, we modelled the spectral energy distribution from the ultraviolet to the sub-millimetre using the dedicated, aperture-matched DustPedia photometry and the Code Investigating GALaxy Evolution (CIGALE). The value of fabs was obtained from the total luminosity emitted by dust and from the bolometric luminosity, which are estimated by the fit. Results. On average, 19% of the stellar radiation is absorbed by dust in DustPedia galaxies. The fraction rises to 25% if only late-type galaxies are considered. The dependence of fabs on morphology, showing a peak for Sb-Sc galaxies, is weak; it reflects a stronger, yet broad, positive correlation with the bolometric luminosity, which is identified for late-type, disk-dominated, high-specific-star-formation rate, gas-rich objects. We find no variation of fabs with inclination, at odds with radiative transfer models of edge-on galaxies. These results call for a self-consistent modelling of the evolution of the dust mass and geometry along the build-up of the stellar content. We also provide template spectral energy distributions in bins of morphology and luminosity and study the variation of fabs with stellar mass and specific star-formation rate. We confirm that the local Universe is missing the high fabs, luminous and actively star-forming objects necessary to explain the energy budget in observations of the extragalactic background light.


2012 ◽  
Vol 10 (H16) ◽  
pp. 273-274
Author(s):  
Sebastian L. Hidalgo ◽  

AbstractWe present the star formation histories (SFHs) of four isolated dwarf galaxies, Cetus, Tucana, LGS-3, and Phoenix, as a function of galactocentric radius. Our results suggest that beyond some distance from the center, there are no significative differences in fundamental properties of these galaxies, such as the star formation rate (SFR) or age-metallicity relation (AMR). The stellar content of this region would be composed of old (≳ 10.5 Gyr) metal-poor stars only. In the innermost regions, dwarf galaxies appear to have formed stars during time intervals which duration varies from galaxy to galaxy. This extended star formation produces the dichotomy between dwarf spheroidal (dSph) and dwarf Transition (dTr) galaxy types.


1986 ◽  
Vol 116 ◽  
pp. 479-495
Author(s):  
P. G. Mezger

Lyman continuum (Lyc) photon production rates can be estimated from radio free-free emission and used to estimate the star formation rate (SFR) of 0 stars. If this SFR is linked to the total SFR through a constant IMF (m ≳0.1 m⊙) one derives for our Galaxy a present-day SFR of ∼10 m⊙ yr−1, which is close to the average SFR over the age of the galactic disk. This is difficult to reconcile with a formation law of the form SFR φ∝Mgask with k>0 which yields SFRs which decrease with time. Even more severe is the fact that the mass distribution of the galactic disk cannot be reproduced by the present-day SFR with a constant IMF. Bimodal star formation, however, reduces the rate at which matter is permanently locked up in low mass and dead stars by nearly a factor of three, and gets reasonable agreement between the present-day distribution of stellar mass and lock-up rate. Bimodal star formation means that stars with m >0.1 m⊙ form in the interarm region while in spiral arms induced star formation produces only stars with m >mc ∼2–3 m⊙.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 184-185
Author(s):  
Elisabete da Cunha

AbstractThe star formation rate (SFR) is a fundamental property of galaxies and it is crucial to understand the build-up of their stellar content, their chemical evolution, and energetic feedback. The SFR of galaxies is typically obtained by observing the emission by young stellar populations directly in the ultraviolet, the optical nebular line emission from gas ionized by newly-formed massive stars, the reprocessed emission by dust in the infrared range, or by combining observations at different wavelengths and fitting the full spectral energy distributions of galaxies. In this brief review we describe the assumptions, advantages and limitations of different SFR indicators, and we discuss the most promising SFR indicators for high-redshift studies.


2011 ◽  
Vol 7 (S284) ◽  
pp. 218-220
Author(s):  
Myriam A. Rodrigues ◽  
François Hammer ◽  
Mathieu Puech

AbstractIn starburst galaxies, the light emitted by the young and massive stars dominates the photon budget along most of the SED and hides the old and intermediate stellar populations. The fraction of old stars and the stellar mass are systematically underestimated by current methods (Wuyts et al. (2009)). We have implemented a new method to retrieve stellar masses and stellar populations in distant galaxies from photometry and spectral features. The method uses a complex SFH description and a new constraint has been introduced: the star-formation rate (SFR).


2020 ◽  
Vol 634 ◽  
pp. A26 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
J. M. Vílchez ◽  
F. Sakhibov ◽  
...  

We derive the photometric, kinematic, and abundance characteristics of 18 star-forming MaNGA galaxies with fairly regular velocity fields and surface brightness distributions and with a large offset between the measured position angles of the major kinematic and photometric axes, ΔPA ≳ 20°. The aim is to examine if there is any other distinctive characteristic common to these galaxies. We found morphological signs of interaction in some (in 11 out of 18) but not in all galaxies. The observed velocity fields show a large variety; the maps of the isovelocities vary from an hourglass-like appearance to a set of straight lines. The position angles of the major kinematic axes of the stellar and gas rotations are close to each other. The values of the central oxygen abundance, radial abundance gradient, and star formation rate are distributed within the intervals defined by galaxies with small (no) ΔPA of similar mass. Thus, we do not find any specific characteristic common to all galaxies with large ΔPA. Instead, the properties of these galaxies are similar to those of galaxies with small (no) ΔPA. This suggests that either the reason responsible for the large ΔPA does not influence other characteristics or the galaxies with large ΔPA do not share a common origin, they can, instead, originate through different channels.


2020 ◽  
Vol 500 (1) ◽  
pp. 40-53
Author(s):  
Fernanda Roman-Oliveira ◽  
Ana L Chies-Santos ◽  
Fabricio Ferrari ◽  
Geferson Lucatelli ◽  
Bruno Rodríguez Del Pino

ABSTRACT We explore the morphometric properties of a group of 73 ram-pressure stripping candidates in the A901/A902 multicluster system, at z∼ 0.165, to characterize the morphologies and structural evolution of jellyfish galaxies. By employing a quantitative measurement of morphometric indicators with the algorithm morfometryka on Hubble Space Telescope (F606W) images of the galaxies, we present a novel morphology-based method for determining trail vectors. We study the surface brightness profiles and curvature of the candidates and compare the results obtained with two analysis packages, morfometryka and iraf/ellipse on retrieving information of the irregular structures present in the galaxies. Our morphometric analysis shows that the ram-pressure stripping candidates have peculiar concave regions in their surface brightness profiles. Therefore, these profiles are less concentrated (lower Sérsic indices) than other star-forming galaxies that do not show morphological features of ram-pressure stripping. In combination with morphometric trail vectors, this feature could both help identify galaxies undergoing ram-pressure stripping and reveal spatial variations in the star formation rate.


Sign in / Sign up

Export Citation Format

Share Document