scholarly journals Microflares to megaflares: Solar observations and modeling

2012 ◽  
Vol 10 (H16) ◽  
pp. 97-98
Author(s):  
Lyndsay Fletcher

AbstractThe observationally determined properties of solar flares such as overall energy budget and distribution in space, time and energy of flare radiation, have improved enormously over the last cycle. This has enabled precision diagnostics of flare plasmas and nonthermal particles in large and small events, informing and driving new theoretical models. The theoretical challenges in understanding flare are considerable, involving MHD and kinetic processes operating in an environment far from equilibrium. New observations have also provided some challenges to long-standing models of flare energy release and transport. This talk overviewed recent observational and theoretical developments, and highlighted some important questions for the future

2000 ◽  
Vol 195 ◽  
pp. 123-132 ◽  
Author(s):  
R. Ramaty ◽  
N. Mandzhavidze

Gamma-ray emission is the most direct diagnostic of energetic ions and relativistic electrons in solar flares. Analysis of solar flare gamma-ray data has shown: (i) ion acceleration is a major consequence of flare energy release, as the total flare energy in accelerated particles appears to be equipartitioned between ≳ 1 MeV/nucleon ions and ≳ 20 keV electrons, and amounts to an important fraction of the total energy release; (ii) there are flares for which over 50% of the energy is in a particles and heavier ions; (iii) in both impulsive and gradual flares, the particles that interact at the Sun and produce gamma rays are essentially always accelerated by the same mechanism that operates in impulsive flares, probably stochastic acceleration through gyroresonant wave particle interaction; and (iv) gamma-ray spectroscopy can provide new information on solar abundances, for example the site of the FIP-bias onset and the photospheric 3He abundance. We propose a new technique for the investigation of mass motion and mixing in the solar atmosphere: the observations of gamma-ray lines from long-term radioactivity produced by flare accelerated particles.


2019 ◽  
pp. 1765-1778
Author(s):  
Joyce Gosata Maphanyane ◽  
Read Brown Mthanganyika Mapeo ◽  
Modupe O. Akinola

This chapter is about the fundamentals of geo-spatial research. The Earth's make-up and position in the entirety of the universe and its systems thereof is revealed. It also categorizes the Earth movements into types, causative effects, and their measurable, predictable time beat. It resonates together with Chapter 2 to form a bigger picture. The scenario draws out whole complete discussions of geoscience study on the origins of matter, space, time and energy entities. The revelations of what is known about the Cosmos today and therefore the Universe is the painstaking work of several scientists. This knowledge is fundamental to all Geo-spatial science research. For one to successfully carry out the research of this nature, it is imperative that one is fully conversant with how the Universe and therefore the Earth and its systems function. The discussions also include a map as a reporting platform for processes of the geospatial science research.


1989 ◽  
Vol 104 (1) ◽  
pp. 387-397
Author(s):  
Peter A. Sturrock

AbstractThis article focuses on two problems involved in the development of models of solar flares. The first concerns the mechanism responsible for eruptions, such as erupting filaments or coronal mass ejections, that are sometimes involved in the flare process. The concept of ‘loss of equilibrium’ is considered and it is argued that the concept typically arises in thought-experiments that do not represent acceptable physical behavior of the solar atmosphere. It is proposed instead that such eruptions are probably caused by an instability of a plasma configuration. The instability may be purely MHD, or it may combine both MHD and resistive processes. The second problem concerns the mechanism of energy release of the impulsive (or gradual) phase. It is proposed that this phase of flares may be due to current interruption, as was originally proposed by Alfvén and Carlqvist. However, in order for this process to be viable, it seems necessary to change one's ideas about the heating and structure of the corona in ways that are outlined briefly.


During the period of the 1980 solar maximum three space missions (P78-1, Solar Maximum Mission and Hinotori ) carried out extensive studies of solar flares. In their different ways all of these missions contributed significant new information to our understanding of the solar flare phenomenon. In this volume the contribution made by these three spacecraft to the study of the energy release and the related creation of high-tem perature plasma, the transport of energy from the primary release site, the production of gamma-rays at energies up to 10 MeV and the ejection of solar matter into interplanetary space are reviewed.


Sign in / Sign up

Export Citation Format

Share Document