Theoretical models of solar flares

Author(s):  
Kazunari Shibata
1990 ◽  
Vol 115 ◽  
pp. 126-131
Author(s):  
S. Serio ◽  
E. Antonucci ◽  
M.A. Dodero ◽  
G. Peres ◽  
F. Reale

AbstractCompact solar flares are triggered by sudden energy release in magnetically confined plasma. This class of flares is well suited to be studied with numerical hydrodynamic models. In particular, one can compare the evolution of observed and synthetic X-ray spectra, computed under various assumptions for the mechanism of impulsive energy deposition, to constrain theoretical models and their parameter space. We discuss recent results on solar flares along this line, non thermal to models of energy depositions by relativistic electron beams. We shall also discuss possible applications of X-ray spectral synthesis to stellar flares.


2019 ◽  
Vol 624 ◽  
pp. A65 ◽  
Author(s):  
C. E. Pugh ◽  
A.-M. Broomhall ◽  
V. M. Nakariakov

Context. Quasi-periodic pulsations (QPPs) are a common feature of solar flares, but there has previously been a lack of observational evidence to support any of the theoretical models that might explain the origin of these QPPs. Aims. We aimed to determine if there are any relationships between the QPP period and other properties of the flaring region, using a previously assembled sample of flares with QPPs. If any relationships exist, then these can be compared with scaling laws for the theoretical QPP mechanisms. Methods. To obtain the flaring region properties, we made use of the Atmospheric Imaging Assembly (AIA) 1600 Å and Helioseismic and Magnetic Imager (HMI) data. The flare ribbons are visible in AIA 1600 Å images, and the positive and negative magnetic polarity ribbons can be distinguished and the magnetic properties determined in the HMI magnetograms. The ribbon properties calculated in this study were the ribbon separation distance, area, total unsigned magnetic flux, and average magnetic field strength. Only the flares that occurred within ±60° of the solar disc centre were included, which meant a sample of 20 flares with 22 QPP signals. Results. Positive correlations were found between the QPP period and the ribbon properties. The strongest correlations were with the separation distance and magnetic flux. Because these ribbon properties also correlate with the flare duration and because the relationship between the QPP period and flare duration may be influenced by observational bias, we also made use of simulated data to determine whether artificial correlations were introduced. These simulations show that although QPPs cannot be detected for certain combinations of QPP period and flare duration, this does not introduce an apparent correlation. Conclusions. There is evidence of relationships between the QPP period and flare ribbon properties, and in the future, the derived scaling laws between these properties can be compared to equivalent scaling laws for theoretical QPP mechanisms.


2021 ◽  
Author(s):  
Peter Gallagher ◽  
Sophie Murray ◽  
John Malone-Leigh ◽  
Joan Campanyà ◽  
Alberto Cañizares ◽  
...  

<p>Forecasting solar flares based on while-light images and photospheric magnetograms of sunspots is notoriously challenging, while accurate forecasting of coronal mass ejections (CME) is still in its infancy. That said, the chances of a CME being launched is more likely following a flare. CMEs launched from the western hemisphere and “halo” CMEs are the most likely to be geomagnetically impactful, but forecasting their arrival and impact at Earth depends on how well their velocity is known near the Sun, the solar wind conditions between the Sun and the Earth, the accuracy of theoretical models and on the orientation of the CME magnetic field.  In this presentation, we describe a well observed active region, flare, CME, radio burst and sudden geomagnetic impulse that was observed on December 7-10, 2020 by a slew of instruments (SDO, ACE, DSCOVR, PSP, US and European magnetometers). This was a solar eruption that was not expected, but the CME and resulting geomagnetic impact should have been straight-forward to model and forecast. What can we learn from our failure to forecast this simple event and its impacts at Earth? </p>


1990 ◽  
Vol 142 ◽  
pp. 355-364
Author(s):  
V.M. Tomozov

A rationale is presented for a conception that appearance of flares in active regions is due to the interaction of large-scale convective elements. Such an interaction gives rise to shear motions in the vicinity of the inverse polarity line of the photospheric magnetic field which generate vortical motions leading to non-equilibrium state of the magnetic configuration. Modern concepts of manifestations of turbulent plasma processes are described in terms of theoretical models for solar flares. Plasma effects arising at propagation of electron beams and thermal fluxes in the solar atmosphere are considered. Their role in the interpretation of hard X-ray and type III radio bursts is pointed out. The role of the turbulent Stark effect for diagnostics of collective plasma processes in solar flares is emphasized.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Quanli Dong ◽  
Dawei Yuan ◽  
Shoujun Wang ◽  
Xun Liu ◽  
Yutong Li ◽  
...  

AbstractThe driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings. In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense, and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.


2012 ◽  
Vol 10 (H16) ◽  
pp. 97-98
Author(s):  
Lyndsay Fletcher

AbstractThe observationally determined properties of solar flares such as overall energy budget and distribution in space, time and energy of flare radiation, have improved enormously over the last cycle. This has enabled precision diagnostics of flare plasmas and nonthermal particles in large and small events, informing and driving new theoretical models. The theoretical challenges in understanding flare are considerable, involving MHD and kinetic processes operating in an environment far from equilibrium. New observations have also provided some challenges to long-standing models of flare energy release and transport. This talk overviewed recent observational and theoretical developments, and highlighted some important questions for the future


2016 ◽  
Vol 11 (S322) ◽  
pp. 31-38
Author(s):  
Ya-Ping Li ◽  
Qiang Yuan ◽  
Q. Daniel Wang ◽  
P. F. Chen ◽  
Joseph Neilsen ◽  
...  

AbstractMulti-wavelength flares have routinely been observed from the supermassive black hole, Sagittarius A⋆ (Sgr A⋆), at our Galactic center. The nature of these flares remains largely unclear, despite many theoretical models. We study the statistical properties of the Sgr A⋆ X-ray flares and find that they are consistent with the theoretical prediction of the self-organized criticality system with the spatial dimension S = 3. We suggest that the X-ray flares represent plasmoid ejections driven by magnetic reconnection (similar to solar flares) in the accretion flow onto the black hole. Motivated by the statistical results, we further develop a time-dependent magnetohydrodynamic (MHD) model for the multi-band flares from Sgr A⋆ by analogy with models of solar flares/coronal mass ejections (CMEs). We calculate the X-ray, infrared flare light curves, and the spectra, and find that our model can explain the main features of the flares.


Author(s):  
P. S. Sklad

Over the past several years, it has become increasingly evident that materials for proposed advanced energy systems will be required to operate at high temperatures and in aggressive environments. These constraints make structural ceramics attractive materials for these systems. However it is well known that the condition of the specimen surface of ceramic materials is often critical in controlling properties such as fracture toughness, oxidation resistance, and wear resistance. Ion implantation techniques offer the potential of overcoming some of the surface related limitations.While the effects of implantation on surface sensitive properties may be measured indpendently, it is important to understand the microstructural evolution leading to these changes. Analytical electron microscopy provides a useful tool for characterizing the microstructures produced in terms of solute concentration profiles, second phase formation, lattice damage, crystallinity of the implanted layer, and annealing behavior. Such analyses allow correlations to be made with theoretical models, property measurements, and results of complimentary techniques.


Sign in / Sign up

Export Citation Format

Share Document