scholarly journals Transonic galactic outflows in a dark matter halo with a central black hole

2015 ◽  
Vol 11 (A29B) ◽  
pp. 741-741
Author(s):  
Asuka Igarashi ◽  
Masao Mori ◽  
Shin-ya Nitta

AbstractWe study fundamental properties of transonic galactic outflows in the gravitational potential of a cold dark matter halo (DMH) with a central super-massive black hole (SMBH) assuming an isothermal, steady and spherically symmetric state. Transonic solutions of galactic outflows are classified according to their topological features. As result, we find two types of transonic solutions distinguished by a magnitude relationship between the gravity of DMH and that of SMBH. The loci of transonic points for two types are different; one transonic point is formed at a central region (< 0.01kpc) and another is at a very distant region (> 100kpc). Also, mass fluxes and outflow velocities are different for two solutions. Thus, these solutions may differently influence the evolution of galaxies and the release of metals into the intergalactic space.Furthermore, we apply our model to the Sombrero galaxy. In this galaxy, the wide-spread hot gas is detected as the trace of galactic outflows while the star-formation rate is low, and the observed gas density distribution is similar to the hydrostatic state (Li et al. 2011). To solve this discrepancy, we propose a solution that this galaxy has a slowly accelerating outflow; the transonic point forms in a very distant region (~ 120 kpc) and the wide subsonic region spreads across the stellar distribution. Thus, the gas density distribution in the observed region is similar to the hydrostatic state. Such slowly accelerating outflows are different from high-velocity outflows conventionally studied (Igarashi et al. 2014).However, this isothermal model requires an unrealistically large mass flux. Then, we apply the polytropic model to this galaxy incorporating mass flux supplied by stellar components. We find that it can reproduce the observed gas density and the temperature distributions with the realistic mass flux. Thus, our polytropic model successfully demonstrates the existence of the slowly accelerating outflow in the Sombrero galaxy (Igarashi et al. 2015).

2016 ◽  
Vol 11 (S321) ◽  
pp. 125-125
Author(s):  
Asuka Igarashi ◽  
Masao Mori ◽  
Shin-ya Nitta

AbstractWe study fundamental properties of transonic galactic outflows in the gravitational potential of a cold dark matter halo (DMH) with a central super-massive black hole (SMBH) assuming a polytropic, steady and spherically symmetric state. We have classified the transonic solutions with respect to their topology in the phase space. As a result, we have found two types of transonic solutions characterized by a magnitude relationship between the gravity of DMH and that of SMBH. These two types of solutions have different loci of the transonic points; one transonic point is formed at a central region (< 0.01kpc) and another is at a distant region (> 100kpc). Also, mass fluxes and outflow velocities are different between the two solutions. These two transonic solutions may play different roles on the star formation history of galaxies and the metal contamination of intergalactic space. Furthermore, we have applied our model to the Sombrero galaxy. In this galaxy, the wide-spread hot gas is detected as an apparent trace of galactic outflows while the star-formation rate is disproportionately low, and the observed gas density distribution is quite similar to the hydrostatic state (Li et al. 2011). To solve this discrepancy, we propose a slowly accelerating outflow in which the transonic point forms in a distant region (~ 120 kpc) and the subsonic region spreads across the stellar distribution. In the subsonic region, the gas density distribution is similar to that of the hydrostatic state. Our model predicts the possibility of the slowly accelerating outflow in the Sombrero galaxy. Igarashi et al. 2014 used the isothermal model and well reproduced the observed gas density distribution, but the estimated mass flux (1.8M⊙/yr) is lager than the mass of the gas supplied by stars (0.3-0.4M⊙/yr). Then, we expect that the polytropic model may reproduce the observational mass of the supplied gas (Igarashi et al. 2015). Such slowly accelerating outflows should be distinguished from the conventional supersonic outflows frequently argued in star-forming galaxies.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Marc S. Seigar

We investigate the dark matter halo density profile of M33. We find that the HI rotation curve of M33 is best described by an NFW dark matter halo density profile model, with a halo concentration of and a virial mass of . We go on to use the NFW concentration of M33, along with the values derived for other galaxies (as found in the literature), to show that correlates with both spiral arm pitch angle and supermassive black hole mass.


2015 ◽  
pp. 17-28 ◽  
Author(s):  
M. Smole

We follow trajectories of kicked black holes in static and evolving dark matter halo potential. We explore both NFW and Einasto dark matter density distributions. Considered dark matter halos represent hosts of massive spiral and elliptical field galaxies. We study critical amplitude of kick velocity necessary for complete black hole ejection at various redshifts and find that ~40% lower kick velocities can remove black holes from their host haloes at z = 7 compared to z = 1. The greatest difference between static and evolving potential occurs near the critical velocity for black hole ejection and at high redshifts. When NFW and Einasto density distributions are compared ~30% higher kick velocities are needed for complete removal of BHs from dark matter halo described by NFW profile.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Zhaoyi Xu ◽  
Xiaobo Gong ◽  
Shuang-Nan Zhang

2015 ◽  
Vol 803 (1) ◽  
pp. 5 ◽  
Author(s):  
Bassem M. Sabra ◽  
Charbel Saliba ◽  
Maya Abi Akl ◽  
Gilbert Chahine

2011 ◽  
Vol 737 (2) ◽  
pp. 50 ◽  
Author(s):  
Marta Volonteri ◽  
Priyamvada Natarajan ◽  
Kayhan Gültekin

Sign in / Sign up

Export Citation Format

Share Document