scholarly journals Cosmological parameters from the comparison of peculiar velocities with predictions from the 2M++ density field

2014 ◽  
Vol 11 (S308) ◽  
pp. 318-321
Author(s):  
Michael J. Hudson ◽  
Jonathan Carrick ◽  
Stephen J. Turnbull ◽  
Guilhem Lavaux

AbstractUsing redshifts from the 2M++ redshift compilation, we reconstruct the density of galaxies within 200 h−1 Mpc, and compare the predicted peculiar velocities Tully-Fisher and SNe peculiar velocities. The comparison yields a best-fit value of β ≡ Ωm0.55/b* = 0.431 ± 0.021, suggesting Ωm0.55σ8,lin = 0.401 ± 0.024, in good agreement with other probes. The predicted peculiar velocity of the Local Group from sources within the 2M++ volume is 540 ± 40 km s−1, towards l = 268° ± 4°, b = 38° ± 6°, which is misaligned by only 10° with the Cosmic Microwave Background dipole. To account for sources outside the 2M++ volume, we fit simultaneously for β* and an external bulk flow in our analysis. The external bulk flow has a velocity of 159 ± 23 km s−1 towards l = 304° ± 11°, b6° ± 13°.

2021 ◽  
Vol 504 (1) ◽  
pp. 1304-1319
Author(s):  
A Salehi ◽  
M Yarahmadi ◽  
S Fathi ◽  
Kazuharu Bamba

ABSTRACT We study the bulk flow of the local universe with Type Ia supernova data (a compilation of Union2 and Pantheon data) in the spatially flat homogeneous and isotropic space–time. In particular, we take the so-called QCDM models, which consist of cold dark matter (CDM) and a Q-component described by a scalar field with its self-interactions determined by an exponential potential. We use different cumulative redshift slices of the Union2 and Pantheon catalogues. A maximum-likelihood analysis of peculiar velocities confirms that, at low redshifts 0.015 < z < 0.1, the bulk flow is moving in the $l=272^{+17}_{-17}, b=33^{+12}_{-12}$, and $302^{+20}_{-20},3^{+10}_{-10}$ directions with $v _\mathrm{bulk} = 225^{+38}_{-35}$ and $246^{+64}_{-46}$ km s−1 for the Pantheon and Union2 data respectively, in good agreement with the direction of the cosmic microwave background dipole and with a number of previous studies at 1σ. However, for high redshifts 0.1 < z < 0.2, we get $v _\mathrm{bulk} = 708^{+110}_{-110}$ and $v_\mathrm{bulk}=1014^{+86}_{-114}\,\text{km\,s}^{-1}$ towards l = 318 ± 10°, b = −15 ± 9° and $l=254^{+16}_{-14},\ b=6^{+7}_{-10}$ for the Pantheon and Union2 data respectively. This indicates that for low redshifts our results are approximately consistent with the ΛCDM model; however, for high redshifts they disagree with ΛCDM and support the results of those studies that report a large bulk flow for the universe.


1987 ◽  
Vol 124 ◽  
pp. 223-227
Author(s):  
Roger L. Davies ◽  
David Burstein ◽  
Alan Dressler ◽  
S. M. Faber ◽  
Donald Lynden-Bell ◽  
...  

We have used a new distance estimator for elliptical galaxies to determine the peculiar velocities, with respect to a uniform Hubble flow, of approximately 400 galaxies. The relative distances of five clusters in common with those of Aaronson et al. (1981, 1986), based on the infrared Tully-Fisher relation for spirals, are in good agreement.We do not see the reflex of the Local Group motion with respect to the microwave background out to recession velocities of 6000 km s−1. Rather, the frame of elliptical galaxies appears to be moving with respect to the microwave background with a velocity of 600 km s−1 towards 1 = 312°, b = +6°. This motion is consistent with a re-analysis of the Rubin et al. (1976) data on the magnitude-diameter relation for ScI galaxies and with the nearby and cluster samples of Aaronson et al. (1982, 1986).


2012 ◽  
Vol 8 (S289) ◽  
pp. 269-273
Author(s):  
Christopher M. Springob ◽  
Christina Magoulas ◽  
Matthew Colless ◽  
D. Heath Jones ◽  
Lachlan Campbell ◽  
...  

AbstractThe 6dF Galaxy Survey (6dFGS) is an all-southern-sky galaxy survey, including 125,000 redshifts and a Fundamental Plane (FP) subsample of 10,000 peculiar velocities. This makes 6dFGS the largest peculiar-velocity sample to date. We have fitted the FP with a tri-variate Gaussian model using a maximum-likelihood approach, and derive the Bayesian probability distribution of the peculiar velocity for each of the 10,000 galaxies. We fit models of the velocity field, including comparisons to the field predicted from the redshift-survey density field, to derive the values of the redshift-space distortion parameter β, the bulk flow and the residual bulk flow in excess of that predicted from the density field. We compare these results to those derived by other authors and discuss the cosmological implications.


1992 ◽  
Vol 10 (2) ◽  
pp. 87-93
Author(s):  
Donald S. Mathewson

AbstractThe initial results of a southern sky survey of the peculiar velocities of 1355 spiral galaxies by a group at Mount Stromlo and Siding Spring Observatories (MSSSO) are discussed against the background of past work in this area. The most important result is that the Great Attractor does not exist; rather, there is bulk flow relative to the cosmic microwave background (CMB) of amplitude 600 km s−1 and scale greater than 130 h−1 Mpc in the Supergalactic plane. This is generated by the assumption that the CMB dipole is Doppler induced by our Galaxy moving at 622 km s−1 relative to the CMB. This may be incorrect, in which case there is no bulk flow and the radiation dipole is cosmological in origin with important implications for the early Universe.


1983 ◽  
Vol 6 ◽  
pp. 227-239
Author(s):  
David A. Hanes

Until the discovery (Corey & Wilkinson, 1976) of the anisotropy of the cosmic microwave background, the Virgo cluster represented something like a Rosetta Stone for many observational cosmologists: in the absence of a significant peculiar velocity component for the Local Group in the direction of the Virgo cluster, its distance, accurately measured, might reveal the global expansion rate and the Hubble age. Although this simple picture has changed, the distance of the Virgo cluster remains important, partly for a sharper understanding of the properties of rich clusters and the galaxies they contain, but more importantly (for my purposes here) as an interesting distance over which we may test various constructions of the extragalactic distance scale.


2005 ◽  
Vol 216 ◽  
pp. 43-50
Author(s):  
J. B. Peterson ◽  
A. K. Romer ◽  
P. L. Gomez ◽  
P. A. R. Ade ◽  
J. J. Bock ◽  
...  

The Arcminute Cosmology Bolometer Array Receiver (Acbar) is a multifrequency millimeter-wave receiver optimized for observations of the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies. Acbar was installed on the 2.1 m Viper telescope at the South Pole in January 2001 and the results presented here incorporate data through July 2002. The power spectrum of the CMB at 150 GHz over the range ℓ = 150 — 3000 measured by Acbar is presented along with estimates for the values of the cosmological parameters within the context of ΛCDM models. The inclusion of ΩΛ greatly improves the fit to the power spectrum. Three-frequency images of the SZ decrement/increment are also presented for the galaxy cluster 1E0657–67.


Sign in / Sign up

Export Citation Format

Share Document