scholarly journals Probing the largest cosmological scales with the correlation between the cosmic microwave background and peculiar velocities

2007 ◽  
Vol 76 (10) ◽  
Author(s):  
Pablo Fosalba ◽  
Olivier Doré
2014 ◽  
Vol 11 (S308) ◽  
pp. 318-321
Author(s):  
Michael J. Hudson ◽  
Jonathan Carrick ◽  
Stephen J. Turnbull ◽  
Guilhem Lavaux

AbstractUsing redshifts from the 2M++ redshift compilation, we reconstruct the density of galaxies within 200 h−1 Mpc, and compare the predicted peculiar velocities Tully-Fisher and SNe peculiar velocities. The comparison yields a best-fit value of β ≡ Ωm0.55/b* = 0.431 ± 0.021, suggesting Ωm0.55σ8,lin = 0.401 ± 0.024, in good agreement with other probes. The predicted peculiar velocity of the Local Group from sources within the 2M++ volume is 540 ± 40 km s−1, towards l = 268° ± 4°, b = 38° ± 6°, which is misaligned by only 10° with the Cosmic Microwave Background dipole. To account for sources outside the 2M++ volume, we fit simultaneously for β* and an external bulk flow in our analysis. The external bulk flow has a velocity of 159 ± 23 km s−1 towards l = 304° ± 11°, b6° ± 13°.


1992 ◽  
Vol 10 (2) ◽  
pp. 87-93
Author(s):  
Donald S. Mathewson

AbstractThe initial results of a southern sky survey of the peculiar velocities of 1355 spiral galaxies by a group at Mount Stromlo and Siding Spring Observatories (MSSSO) are discussed against the background of past work in this area. The most important result is that the Great Attractor does not exist; rather, there is bulk flow relative to the cosmic microwave background (CMB) of amplitude 600 km s−1 and scale greater than 130 h−1 Mpc in the Supergalactic plane. This is generated by the assumption that the CMB dipole is Doppler induced by our Galaxy moving at 622 km s−1 relative to the CMB. This may be incorrect, in which case there is no bulk flow and the radiation dipole is cosmological in origin with important implications for the early Universe.


1997 ◽  
Vol 483 (1) ◽  
pp. 38-50 ◽  
Author(s):  
R. Bruce Partridge ◽  
Eric A. Richards ◽  
Edward B. Fomalont ◽  
K. I. Kellerman ◽  
Rogier A. Windhorst

2011 ◽  
Vol 526 ◽  
pp. L7 ◽  
Author(s):  
P. Noterdaeme ◽  
P. Petitjean ◽  
R. Srianand ◽  
C. Ledoux ◽  
S. López

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koustav Konar ◽  
Kingshuk Bose ◽  
R. K. Paul

AbstractBlackbody radiation inversion is a mathematical process for the determination of probability distribution of temperature from measured radiated power spectrum. In this paper a simple and stable blackbody radiation inversion is achieved by using an analytical function with three determinable parameters for temperature distribution. This inversion technique is used to invert the blackbody radiation field of the cosmic microwave background, the remnant radiation of the hot big bang, to infer the temperature distribution of the generating medium. The salient features of this distribution are investigated and analysis of this distribution predicts the presence of distortion in the cosmic microwave background spectrum.


2009 ◽  
Vol 102 (13) ◽  
Author(s):  
C. Räth ◽  
G. E. Morfill ◽  
G. Rossmanith ◽  
A. J. Banday ◽  
K. M. Górski

2002 ◽  
Vol 25 (9) ◽  
pp. 1-82
Author(s):  
M. Bersanelli ◽  
D. Maino ◽  
A. Mennella

Sign in / Sign up

Export Citation Format

Share Document