Four years of starspot evolution on an active F-type ultra-fast rotator KIC 6791060

2018 ◽  
Vol 13 (S340) ◽  
pp. 229-232
Author(s):  
Subhajeet Karmakar ◽  
Jeewan C. Pandey ◽  
Igor S. Savanov ◽  
Ashish Raj ◽  
E. S. Dmitrienko ◽  
...  

AbstractUsing the data obtained fromKeplersatellite, we have analyzed an F-type ultra-fast rotator KIC 6791060. We derive a rotational period of 0.34365±0.00004 d. Multiple periodicity with a period separation of ~0.00016 d was detected, which appears to be a result of the relative velocity between the multiple spot-groups in different stellar latitudes due to the surface differential rotation. Modeling of the surface inhomogeneities using the light curve of 3899 epochs shows the evidence of single active longitude region. The active longitude is found to drift along the longitude at a rate similar to the detected period separation of the F-type star. The surface coverage of cool spots is found to be in the range of ~0.07–0.44%. The low value of the spottedness can be interpreted probably due to the thinner convection zone on the F-type star.

2010 ◽  
Vol 6 (S272) ◽  
pp. 204-205
Author(s):  
Mary E. Oksala ◽  
Gregg A. Wade ◽  
Wagner L. F. Marcolino ◽  
Jason H. Grunhut ◽  
David Bohlender ◽  
...  

AbstractWe report on the detection of a strong, organized magnetic field in the helium-variable early B-type star HR 7355 using spectropolarimetric data obtained with ESPaDOnS on CFHT by the MiMeS large program. We also present results from new V-band differential photometry obtained with the CTIO 0.9m telescope. We investigate the longitudinal field, using a technique called Least-Squares Deconvolution (LSD), and the rotational period of HR 7355. These new observations strongly support the proposal that HR 7355 harbors a structured magnetosphere similar to that in the prototypical helium-strong star, σ Ori E.


2020 ◽  
Vol 496 (3) ◽  
pp. 2636-2647
Author(s):  
Oleksandra Ivanova ◽  
Yuri Skorov ◽  
Igor Luk'yanyk ◽  
Dušan Tomko ◽  
Marek Husárik ◽  
...  

ABSTRACT We present the results of photometric observations of active asteroid (6478) Gault performed at heliocentric distances from 2.46 to 2.30 au and geocentric distances from 1.79 to 1.42 au between 2019 January 15 and March 28. Observations were carried out at the 2.5-m telescope of SAI MSU (Caucasian Mountain Observatory) on 2019 January 15 and at the 1.3 and 0.61-m telescopes (SPb) on 2019 February 6 and March 28, respectively. The direct images of the asteroid were obtained with the broad-band B, V, and R filters. Comet-like structures were detected at all observation dates. Colour maps were built and colour variations along the tail for the observation made on 2019 January 15 were analysed. The Afρ was calculated for the R filter, and the evaluated value varies from 47 to 32 cm for the period from 2019 January to the end of March. The rotational period of the body is estimated from the light curve by different methods and is about 1.79 h. Possible mechanisms of triggering Gault's activity are discussed.


2006 ◽  
Vol 2 (S239) ◽  
pp. 488-493
Author(s):  
Allan Sacha Brun ◽  
Mark S. Miesch ◽  
Juri Toomre

AbstractThree-dimensional global modelling of turbulent convection coupled to rotation and magnetism within the Sun are revealing processes relevant to many stars. We study spherical shells of compressible convection spanning many density scale heights using the MHD version of the anelastic spherical harmonic (ASH) code on massively parallel supercomputers. The simulations reveal that strong magnetic fields can be realized in the bulk of the solar convection zone while still attaining differential rotation profiles that make good contact with helioseismic findings. We find that the Maxwell and Reynolds stresses present in such a turbulent layer play an important role in redistributing angular momentum, with the latter maintaining the differential rotation, aided by baroclinic forcing at the base of the convection zone which is consistent with a tachocline there. The dynamo processes generate strong non-axisymmetric and intermittent fields and weak mean (axisymmetric) fields, but do not possess a regular cyclic magnetism. The explicit inclusion of penetrative convection into the tachocline below is modifying such behavior, serving to build strong toroidal magnetic fields there that may yield more prominent mean fields that have the potential of erupting upward.


2016 ◽  
Vol 12 (S328) ◽  
pp. 69-76
Author(s):  
Adriana Valio

AbstractMagnetic activity of stars manifests itself in the form of dark spots on the stellar surface. This in turn will cause variations of a few percent in the star light curve as it rotates. When an orbiting planet eclipses its host a star, it may cross in front of one of these spots. In this case, a “bump” will be detected in the transit lightcurve. By fitting these spot signatures with a model, it is possible to determine the spots physical properties such as size, temperature, location, magnetic field, and lifetime. Moreover, the monitoring of the spots longitude provides estimates of the stellar rotation and differential rotation. For long time series of transits during multiple years, magnetic cycles can also be determined. This model has been applied successfully to CoRoT-2, CoRoT-4, CoRot-5, CoRoT-6, CoRoT-8, CoRoT-18, Kepler-17, and Kepler-63.


2021 ◽  
Author(s):  
Nicolas Morales ◽  
Jose Luis Ortiz ◽  
Pablo Santos-Sanz ◽  
Monica Vara ◽  
Damya Souami

<p>Trans-Neptunian Objects (TNOs) are thought to be among the least evolved Solar System objects, which retain information on the origin and evolution of the outer parts of it. They are located at far distances of the Sun, where the influence of our star is less dramatic than in the closer regions. Thus, these icy objects are extremely interesting bodies that hide plenty of information on the physical and dynamical processes that<br />shaped our Solar System.<br />We only know a few retrograde TNOs so far (e.g. 2008 KV42 [1], 2011 KT19 [2], 2004 XR190). One of the few known retrograde objects listed in the MPC database as a scattered disk object is 2013 LU28, which has a high orbital eccentricity (e = 0.95), a large semimajor axis (a= 181 AU) and a very high inclination (i = 125.4º). This exotic object is also classified as an “extended centaur”, because its perihelion at 8.7 AU moves it into the centaur region.<br />The physical properties of 2013 LU28, such as its rotational period and light curve amplitude, are unknown but can be revealed through photometry. With this aim, we observed this object during three observing runs on 2021 January and March using two telescopes, the 1.23 m telescope at Calar Alto Observatory in Almería, Spain and the 1.5 m telescope at Sierra Nevada Observatory in Granada, Spain. From these observations we derived the first determination of the rotational light curve of 2013LU28 from which we derived its rotational period and its peak-to-peak light curve amplitude. The obtained amplitude turned out to be higher than the average amplitude of most TNOs, which points toward an elongated or a binary object. Other magnitudes, such as its absolute magnitude (H) were also derived. We will present and discuss preliminary results on all the above.</p> <p><br />Acknowledgements<br />The authors acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). P.S-S. acknowledges financial support by the Spanish grant AYA-    RTI2018-098657-J-I00 "LEO-SBNAF" (MCIU/AEI/FEDER, UE). We are grateful to the CAHA and OSN staffs. This research is partially based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by Junta de Andalucı́a and Consejo Superior de Investigaciones Cientı́ficas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada  (OSN) operated by Instituto de Astrofı́sica de Andalucı́a (CSIC).</p> <p>Bibliography<br />[1] B. Gladman, J. Kavelaars, J.-M. Petit, M. L. N. Ashby, J. Parker, J. et al. ApJ 697:L91–L94, 2009<br />[2] Ying-Tung Chen , Hsing Wen Lin, Matthew J. Holman, Matthew J. Payne et al. ApJ 827:L24 (5pp), 2016</p>


Sign in / Sign up

Export Citation Format

Share Document