calar alto
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 10)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Mónica Vara-Lubiano ◽  
Nicolás Morales ◽  
Flavia Rommel ◽  
José Luis Ortiz ◽  
Bruno Sicardy ◽  
...  

<p>Physical properties of Trans-Neptunian Objects (TNOs) have been of increasing interest in the last two decades, as these objects are considered to be among the least altered through the Solar System evolution, and thus preserve valuable information about its origin [1]. The study of these objects through the ground-based method of stellar occultations has risen in the last years, as this technique allows the determination of physical properties with considerably good accuracies [2,3,4]. </p> <p>Here we present the results of the multi-chord stellar occultation of the GAIA source 3444789965847631104 (m<sub>v</sub>≈16.8) by the TNO (19521) Chaos on 2020 November 20, which was predicted within our systematic programme on stellar occultations by TNOs and outer solar system bodies [5]. The prediction was updated with astrometric observations carried out two days before the event with the 1.23-m telescope at Calar Alto observatory in Almería, Spain, and it was favorable to the South of Europe. The campaign that we organized involved 19 observing sites and resulted in three positive detections, one of them obtained from the 4.2-m WHT telescope at La Palma, 11 negative detections, and 5 sites that could not observe due to bad weather.<em> </em></p> <p>We derived the instantaneous limb of Chaos by fitting the extremities of the positive chords to an ellipse to determine accurate size, shape, and geometric albedo for this object. The preliminary results give a slightly smaller area-equivalent diameter than the one derived from Herschel thermal data [6], but photometric observations of this object are still under analysis to complement and improve the results. <strong><br /><br /></strong><strong>References</strong></p> <p>[1] Morbidelli, A., Levison, H. F., & Gomes, R. 2008, ed. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, R. Dotson, 275</p> <p>[2] Ortiz, J. L., Sicardy, B., Braga-Ribas, F., et al. 2012, Nature, 491, 566</p> <p>[3] Braga-Ribas, F., Sicardy, B., Ortiz, J. L., et al. 2013, ApJ, 773, 26</p> <p>[4] Ortiz, J.L., Santos-Sanz, P., Sicardy, B., et al. 2017, Nature, 550, 7675, pp. 219-223</p> <p>[5] Camargo, J. I. B., Vieira-Martins, R., Assafin, M., et al. 2014, A&A, 561, A37</p> <p>[6] Vilenius, E., Kiss, C., Mommert, M., Müller, T., et al. 2012, A&A, 541, A94 </p> <p><strong>Acknowledgements</strong><strong> </strong></p> <p>We acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). Part of the research leading to these results has received funding from the European Research Council under the European Community’s H2020 (2014-2020/ERC Grant Agreement no. 669416 “LUCKY STAR”). M.V-L. acknowledges funding from Spanish project AYA2017-89637-R (FEDER/MICINN). P.S-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 ``LEO-SBNAF'' (MCIU/AEI/FEDER, UE). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). We are grateful to the CAHA and OSN staffs. This research is partially based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by Junta de Andalucía and Consejo Superior de Investigaciones Científicas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofísica de Andalucía (CSIC). Partially based on observations made with the Tx40 telescope at the Observatorio Astrofísico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Técnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Física del Cosmos de Aragón (CEFCA). Tx40 is funded with the Fondos de Inversiones de Teruel (FITE).</p>


2021 ◽  
Author(s):  
Nicolas Morales ◽  
Jose Luis Ortiz ◽  
Pablo Santos-Sanz ◽  
Monica Vara ◽  
Damya Souami

<p>Trans-Neptunian Objects (TNOs) are thought to be among the least evolved Solar System objects, which retain information on the origin and evolution of the outer parts of it. They are located at far distances of the Sun, where the influence of our star is less dramatic than in the closer regions. Thus, these icy objects are extremely interesting bodies that hide plenty of information on the physical and dynamical processes that<br />shaped our Solar System.<br />We only know a few retrograde TNOs so far (e.g. 2008 KV42 [1], 2011 KT19 [2], 2004 XR190). One of the few known retrograde objects listed in the MPC database as a scattered disk object is 2013 LU28, which has a high orbital eccentricity (e = 0.95), a large semimajor axis (a= 181 AU) and a very high inclination (i = 125.4º). This exotic object is also classified as an “extended centaur”, because its perihelion at 8.7 AU moves it into the centaur region.<br />The physical properties of 2013 LU28, such as its rotational period and light curve amplitude, are unknown but can be revealed through photometry. With this aim, we observed this object during three observing runs on 2021 January and March using two telescopes, the 1.23 m telescope at Calar Alto Observatory in Almería, Spain and the 1.5 m telescope at Sierra Nevada Observatory in Granada, Spain. From these observations we derived the first determination of the rotational light curve of 2013LU28 from which we derived its rotational period and its peak-to-peak light curve amplitude. The obtained amplitude turned out to be higher than the average amplitude of most TNOs, which points toward an elongated or a binary object. Other magnitudes, such as its absolute magnitude (H) were also derived. We will present and discuss preliminary results on all the above.</p> <p><br />Acknowledgements<br />The authors acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). P.S-S. acknowledges financial support by the Spanish grant AYA-    RTI2018-098657-J-I00 "LEO-SBNAF" (MCIU/AEI/FEDER, UE). We are grateful to the CAHA and OSN staffs. This research is partially based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by Junta de Andalucı́a and Consejo Superior de Investigaciones Cientı́ficas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada  (OSN) operated by Instituto de Astrofı́sica de Andalucı́a (CSIC).</p> <p>Bibliography<br />[1] B. Gladman, J. Kavelaars, J.-M. Petit, M. L. N. Ashby, J. Parker, J. et al. ApJ 697:L91–L94, 2009<br />[2] Ying-Tung Chen , Hsing Wen Lin, Matthew J. Holman, Matthew J. Payne et al. ApJ 827:L24 (5pp), 2016</p>


Author(s):  
Simona Lombardo ◽  
Eduard R. Muslimov ◽  
Kelly Joaquina ◽  
Gerard R. Lemaître ◽  
Marc Pons ◽  
...  
Keyword(s):  

2020 ◽  
Vol 641 ◽  
pp. A161
Author(s):  
Y. Zhang ◽  
I. A. G. Snellen ◽  
P. Mollière ◽  
F. J. Alonso-Floriano ◽  
R. K. Webb ◽  
...  

Context. It has been suggested that the helium absorption line at 10 830 Å that originates from the metastable triplet state 23S is an excellent probe for the extended atmospheres of hot Jupiters and their hydrodynamic escape processes. It has recently been detected in the transmission spectra of a handful of planets. The isotropic reemission will lead to helium airglow that may be observable at other orbital phases. Aims. We investigate the detectability of He I emission at 10 830 Å in the atmospheres of exoplanets using high-resolution spectroscopy. This would provide insights into the properties of the upper atmospheres of close-in gas giants. Methods. We estimated the expected strength of He I emission in hot Jupiters based on their transmission signal. We searched for the He I 10 830 Å emission feature in τ Boo b in three nights of high-resolution spectra taken by CARMENES at the 3.5m Calar Alto telescope. The spectra from each night were corrected for telluric absorption, sky emission lines, and stellar features, and were shifted to the planetary rest frame to search for the emission. Results. The He I emission is not detected in τ Boo b at a 5σ contrast limit of 4 × 10−4 for emission line widths of >20 km s−1. This is about a factor 8 above the expected emission level (assuming a typical He I transit absorption of 1% for hot Jupiters). This suggests that targeting the He I emission with well-designed observations using upcoming instruments such as VLT/CRIRES+ and E-ELT/HIRES is possible.


2020 ◽  
Vol 496 (4) ◽  
pp. 5455-5462
Author(s):  
A Kostenkov ◽  
S Fabrika ◽  
O Sholukhova ◽  
A Sarkisyan ◽  
D Bizyaev

ABSTRACT MN112 is a Galactic luminous blue variable (LBV) candidate with a circumstellar nebula. P Cygni was the first LBV discovered, and was recorded during major eruptions in the 17th century. The stars have similar spectra with strong emission hydrogen lines, He i, N ii, Si ii, and Fe iii lines. We present the results of spectroscopic analysis and modelling of MN112 spectra. We obtained the main stellar parameters and chemical abundances of MN112 and compared them with those of P Cygni. Atmosphere models were calculated using the non-local thermodynamic equilibrium radiative transfer code cmfgen. We have used spectra of MN112 obtained with the 3.5-m telescope at the Observatory of Calar Alto and 3.5-m ARC telescope at the Apache Point Observatory. P Cygni spectra were taken with the 6-m BTA telescope. We have found the best fit of the observed spectrum with the model at temperature $T_{\text{eff}}= 15\, 200$ K, clumping-corrected mass-loss rate $\dot{M}f^{-0.5}=5.74 \times 10^{-5}\, \mathrm{M}_{\odot }\text{yr}^{-1}$, filling factor f = 0.1, luminosity $L=5.77 \times 10^5\, \mathrm{L}_{\odot }$ for MN112. The ratio of helium to hydrogen He/H is 0.27 (by the number of atoms) with nitrogen overabundance (XN/X⊙ = 6.8) and an underabundance of carbon (XC/X⊙ < 0.1).


2019 ◽  
Vol 491 (3) ◽  
pp. 4496-4508 ◽  
Author(s):  
J Lillo-Box ◽  
J Aceituno ◽  
S Pedraz ◽  
G Bergond ◽  
D Galadí-Enríquez ◽  
...  

ABSTRACT CAFE is a high-resolution spectrograph with high-precision radial velocity capabilities mounted at the 2.2 m telescope of Calar Alto Observatory. It suffered from strong degradation after 4 yr of operations and it has now been upgraded. The upgrades of the instrument (now named CAFE2) aimed at recovering the throughput and improving the stability due to the installation of a new grating, an active temperature control in the isolated coudé room, and a new scrambling system. In this paper, we present the results of the new commissioning of the instrument and a new pipeline (CAFExtractor) that provides the user with fully reduced data including radial velocity measurements of FGK dwarf stars. The commissioning results show a clear improvement in the instrument performance. The room temperature is now stabilized down to 5 mK during one night and below 50 mK over two months. CAFE2 now provides 3 m s−1 precision on the reference ThAr frames and the on-sky tests provide a radial velocity precision of 8 m s−1 during one night (for S/N > 50). The throughput of the instrument is now back to nominal values with an efficiency of around 15 per cent at 550 nm. The limiting magnitude of the instrument for a 1 h exposure and S/N = 20 is V = 15. With all these properties, CAFE enters into the small family of high-resolution spectrographs at 2–4 m telescopes capable of reaching radial velocity precisions below 10 m s−1.


2019 ◽  
Vol 632 ◽  
pp. A24
Author(s):  
B. Fuhrmeister ◽  
S. Czesla ◽  
L. Hildebrandt ◽  
E. Nagel ◽  
J. H. M. M. Schmitt ◽  
...  

The He I infrared (IR) triplet at 10 830 Å is an important activity indicator for the Sun and in solar-type stars, however, it has rarely been studied in relation to M dwarfs to date. In this study, we use the time-averaged spectra of 319 single stars with spectral types ranging from M0.0 V to M9.0 V obtained with the CARMENES high resolution optical and near-infrared spectrograph at Calar Alto to study the properties of the He I IR triplet lines. In quiescence, we find the triplet in absorption with a decrease of the measured pseudo equivalent width (pEW) towards later sub-types. For stars later than M5.0 V, the He I triplet becomes undetectable in our study. This dependence on effective temperature may be related to a change in chromospheric conditions along the M dwarf sequence. When an emission in the triplet is observed, we attribute it to flaring. The absence of emission during quiescence is consistent with line formation by photo-ionisation and recombination, while flare emission may be caused by collisions within dense material. The He I triplet tends to increase in depth according to increasing activity levels, ultimately becoming filled in; however, we do not find a correlation between the pEW(He IR) and X-ray properties. This behaviour may be attributed to the absence of very inactive stars (LX∕Lbol < −5.5) in our sample or to the complex behaviour with regard to increasing depth and filling in.


2019 ◽  
Vol 15 (S356) ◽  
pp. 351-354
Author(s):  
Shimeles Terefe ◽  
Ascensión del Olmo ◽  
Paola Marziani ◽  
Mirjana Pović

AbstractRecent work has shown that it is possible to systematize quasars (QSOs) spectral diversity in 4DE1 parameter space. The spectra contained in most of the surveys have low signal to noise ratio which fed the impression that all QSO’s are spectroscopically similar. Exploration of 4DE1 parameter space gave rise to the concept of two populations of QSOs that present important spectroscopic differences. We aim to quantify broad emission line differences between radio quiet and radio loud sources by exploiting more complete samples of QSO with spectral coverage in Hβ, MgII and CIV emission lines. We used a high redshift sample (0.35 < z < 1) of strong radio emitter QSOs observations from Calar Alto Observatory in Spain.


2019 ◽  
Vol 629 ◽  
pp. A110 ◽  
Author(s):  
F. J. Alonso-Floriano ◽  
I. A. G. Snellen ◽  
S. Czesla ◽  
F. F. Bauer ◽  
M. Salz ◽  
...  

Context. Recently, the He I triplet at 10 830 Å was rediscovered as an excellent probe of the extended and possibly evaporating atmospheres of close-in transiting planets. This has already resulted in detections of this triplet in the atmospheres of a handful of planets, both from space and from the ground. However, while a strong signal is expected for the hot Jupiter HD 209458 b, only upper limits have been obtained so far. Aims. Our goal is to measure the helium excess absorption from HD 209458 b and assess the extended atmosphere of the planet and possible evaporation. Methods. We obtained new high-resolution spectral transit time-series of HD 209458 b using CARMENES at the 3.5 m Calar Alto telescope, targeting the He I triplet at 10 830 Å at a spectral resolving power of 80 400. The observed spectra were corrected for stellar absorption lines using out-of-transit data, for telluric absorption using the MOLECFIT software, and for the sky emission lines using simultaneous sky measurements through a second fibre. Results. We detect He I absorption at a level of 0.91 ± 0.10% (9 σ) at mid-transit. The absorption follows the radial velocity change of the planet during transit, unambiguously identifying the planet as the source of the absorption. The core of the absorption exhibits a net blueshift of 1.8 ± 1.3 km s−1. Possible low-level excess absorption is seen further blueward from the main absorption near the centre of the transit, which could be caused by an extended tail. However, this needs to be confirmed. Conclusions. Our results further support a close relation between the strength of planetary absorption in the helium triplet lines and the level of ionising, stellar X-ray, and extreme-UV irradiation.


2019 ◽  
Vol 623 ◽  
pp. A136 ◽  
Author(s):  
D. Hintz ◽  
B. Fuhrmeister ◽  
S. Czesla ◽  
J. H. M. M. Schmitt ◽  
E. N. Johnson ◽  
...  

Chromospheric modeling of observed differences in stellar activity lines is imperative to fully understand the upper atmospheres of late-type stars. We present one-dimensional parametrized chromosphere models computed with the atmosphere code PHOENIX using an underlying photosphere of 3500 K. The aim of this work is to model chromospheric lines of a sample of 50 M2–3 dwarfs observed in the framework of the CARMENES, the Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs, exoplanet survey. The spectral comparison between observed data and models is performed in the chromospheric lines of Na I D2, Hα, and the bluest Ca II infrared triplet line to obtain best-fit models for each star in the sample. We find that for inactive stars a single model with a VAL C-like temperature structure is sufficient to describe simultaneously all three lines adequately. Active stars are rather modeled by a combination of an inactive and an active model, also giving the filling factors of inactive and active regions. Moreover, the fitting of linear combinations on variable stars yields relationships between filling factors and activity states, indicating that more active phases are coupled to a larger portion of active regions on the surface of the star.


Sign in / Sign up

Export Citation Format

Share Document