Infrared Studies of the Variability and Mass Loss of Some of the Dustiest Asymptotic Giant Branch Stars in the Magellanic Clouds

2018 ◽  
Vol 14 (S343) ◽  
pp. 498-499
Author(s):  
B. Sargent ◽  
S. Srinivasan ◽  
M. Boyer ◽  
M. Feast ◽  
P. Whitelock ◽  
...  

AbstractThe asymptotic giant branch (AGB) stars with the reddest colors have the largest amounts of circumstellar dust. AGB stars vary in their brightness, and studies show that the reddest AGB stars tend to have longer periods than other AGB stars and are more likely to be fundamental mode pulsators than other AGB stars. Such stars are difficult to study, as they are often not detected at optical wavelengths. Therefore, they must be observed at infrared wavelengths. Using the Spitzer Space Telescope, we have observed a sample of very dusty AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) over Cycles 9 through 12 during the Warm Spitzer mission. For each cycle’s program, we typically observed a set of AGB stars at both 3.6 and 4.5 μm wavelength approximately monthly for most of a year. We present results from our analysis of the data from these programs.

1991 ◽  
Vol 148 ◽  
pp. 363-364
Author(s):  
Neill Reid ◽  
J. R. Mould

Since the pioneering objective prism surveys by Westerlund (1960) and Blanco et al. (1980), the Magellanic Clouds have proved a fruitful site for exploring the evolution of AGB stars. We have used photometric techniques to extend the prism C-star surveys to M- and S-type AGB stars, constructing luminosity functions and obtaining spectra of individual stars for comparison with theoretical predictions. We have concentrated on the Large Magellanic Cloud (LMC), but we have recently obtained observations of luminous red giants in a region of the Small Magellanic Cloud (SMC). In this paper we compare the results from these studies of the two satellite systems.


Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 223
Author(s):  
Paolo Ventura ◽  
Ester Marini ◽  
Silvia Tosi ◽  
Flavia Dell’Agli

We explore the potential offered by the incoming launch of the James Webb Space Telescope, to study the stars evolving through the asymptotic giant branch (AGB) phase. To this aim we compare data of AGB stars in the Large Magellanic Cloud, taken with the IRS spectrograph, with the results from modelling of AGB evolution and dust formation in the wind. We find that the best diagrams to study M- and C-stars are, respectively, ([F770W]−[F2500W], [F770W]) and ([F770W]−[F1800W], [F1800W]). ([F770W]−[F2500W], [F770W]) turns out to be the best way of studying the AGB population in its entirely.


1999 ◽  
Vol 191 ◽  
pp. 567-572 ◽  
Author(s):  
Jacco Th. van Loon

We report on some recent advances in the study and understanding of heavily obscured AGB stars in the Magellanic Clouds.


1993 ◽  
Vol 155 ◽  
pp. 319-319
Author(s):  
Neill Reid

Asymptotic giant branch stars are the immediate precursors to the planetary nebula stage of stellar evolution. It is clear that the latter stages of a stars life on the AGB are accompanied by either continuous or episodic mass-loss, with the final convulsion being the ejection of the envelope (the future planetary shell), the gradual exposure of the bare CO core and the rapid horizontal evolution to the blue in the H-R diagram. Thus, the structure of the planetary nebula luminosity function, particularly at the higher luminosities (although this phase is extremely rapid), is intimately tied to the luminosity function of the AGB.


2008 ◽  
Vol 4 (S256) ◽  
pp. 385-390
Author(s):  
Paola Marigo ◽  
Léo Girardi ◽  
Alessandro Bressan ◽  
Martin A. T. Groenewegen ◽  
Bernhard Aringer ◽  
...  

AbstractWe present the latest results of a theoretical project aimed at investigating the properties of thermally-pulsing asymptotic giant branch (TP-AGB) stars in different host systems. For this purpose, we have recently calculated calibrated synthetic TP-AGB tracks — covering a wide range of metallicities (0.0001 ≤ Z ≤ 0.03) up to the complete ejection of the envelope by stellar winds (Marigo & Girardi 2007) — and used them to generate new sets of stellar isochrones (Marigo et al. 2008). The latter are converted to about 25 different photometric systems, including the mid-infrared filters of Spitzer and AKARI as the effect of circumstellar dust from AGB stars is taken into account. First comparisons with AGB data in the MC field and stellar clusters are discussed.


Sign in / Sign up

Export Citation Format

Share Document