Electromagnetic induction heating of planets orbiting late M dwarfs

2018 ◽  
Vol 14 (S345) ◽  
pp. 232-233
Author(s):  
Kristina G. Kislyakova

AbstractWe propose induction heating of planetary interiors as an energy source in the planetary mantles. Induction heating arises when a changing magnetic field induces currents in a conducting planetary mantle which then dissipate to heat the planet, mostly within an upper layer called the skin depth. This physical process can play a role in planetary interiors around strongly magnetized stars such as low mass M dwarfs with kG magnetic fields, which are common among these stars.

2008 ◽  
Vol 4 (S259) ◽  
pp. 339-344
Author(s):  
Ansgar Reiners

AbstractDirect measurements of magnetic fields in low-mass stars of spectral class M have become available during the last years. This contribution summarizes the data available on direct magnetic measurements in M dwarfs from Zeeman analysis in integrated and polarized light. Strong magnetic fields at kilo-Gauss strength are found throughout the whole M spectral range, and so far all field M dwarfs of spectral type M6 and later show strong magnetic fields. Zeeman Doppler images from polarized light find weaker fields, which may carry important information on magnetic field generation in partially and fully convective stars.


Author(s):  
Arnulfo Pérez-Pérez ◽  
Jorge Sergio Téllez-Martínez ◽  
Gregorio Hortelano-Capetillo ◽  
Jesús Israel Barraza-Fierro

In this work, the dimensions of a furnace for melting of ferrous alloys were determined. The furnace has an electromagnetic induction heating system. In addition, the parameters of electrical power supply such as frequency and power were calculated. A 5kg cast steel mass with a density of 7.81 kg / dm3 was proposed. This corresponds to a crucible volume of 0.641 dm3. The frequency was obtained from tables, which take into account the diameter of the crucible, and its value was 1 KHz. The energy consumption was determined with the heat required to bring the steel to the temperature of 1740 K, the energy losses through the walls, bottom and top of the crucible. This value was divided between the heating time (30 minutes) and resulted in a power of 4.5 KW. The development of the calculations shows that the induction heating is an efficient process and allows a fast melting of ferrous alloys.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Christian W. Müller ◽  
Ronny Pfeifer ◽  
Karen Meier ◽  
Sebastian Decker ◽  
Janin Reifenrath ◽  
...  

Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME). Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation,µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery.


2018 ◽  
Vol 168 ◽  
pp. 02004
Author(s):  
Richard Lenhard ◽  
Milan Malcho ◽  
Katarína Kaduchová

In the paper is shown the connection of two toolboxes in an Ansys Workbench solution for induction heating. In Ansys Workbench, Maxwell electromagnetism programs and Fluent have been linked. In Maxwell, a simulation of electromagnetic induction was performed, where data on the magnetic field distribution in the heated material was obtained and then transformed into the Fluent program in which the induction heating simulation was performed.


2010 ◽  
Vol 6 (S270) ◽  
pp. 103-106
Author(s):  
R. Rao ◽  
J.-M. Girart ◽  
D. P. Marrone

AbstractThere have been a number of theoretical and computational models which state that magnetic fields play an important role in the process of star formation. Competing theories instead postulate that it is turbulence which is dominant and magnetic fields are weak. The recent installation of a polarimetry system at the Submillimeter Array (SMA) has enabled us to conduct observations that could potentially distinguish between the two theories. Some of the nearby low mass star forming regions show hour-glass shaped magnetic field structures that are consistent with theoretical models in which the magnetic field plays a dominant role. However, there are other similar regions where no significant polarization is detected. Future polarimetry observations made by the Submillimeter Array should be able to increase the sample of observed regions. These measurements will allow us to address observationally the important question of the role of magnetic fields and/or turbulence in the process of star formation.


2020 ◽  
Vol 495 (4) ◽  
pp. 3795-3806 ◽  
Author(s):  
James Wurster ◽  
Benjamin T Lewis

ABSTRACT Non-ideal magnetohydrodynamics (MHD) is the dominant process. We investigate the effect of magnetic fields (ideal and non-ideal) and turbulence (sub- and transsonic) on the formation of circumstellar discs that form nearly simultaneously with the formation of the protostar. This is done by modelling the gravitational collapse of a 1 M⊙ gas cloud that is threaded with a magnetic field and imposed with both rotational and turbulent velocities. We investigate magnetic fields that are parallel/antiparallel and perpendicular to the rotation axis, two rotation rates, and four Mach numbers. Disc formation occurs preferentially in the models that include non-ideal MHD where the magnetic field is antiparallel or perpendicular to the rotation axis. This is independent of the initial rotation rate and level of turbulence, suggesting that subsonic turbulence plays a minimal role in influencing the formation of discs. Aside from first core outflows that are influenced by the initial level of turbulence, non-ideal MHD processes are more important than turbulent processes during the formation of discs around low-mass stars.


2020 ◽  
Vol 495 (4) ◽  
pp. 3807-3818 ◽  
Author(s):  
James Wurster ◽  
Benjamin T Lewis

ABSTRACT Non-ideal magnetohydrodynamics (MHD) is the dominant process. We investigate the effect of magnetic fields (ideal and non-ideal) and turbulence (sub- and transsonic) on the formation of protostars by following the gravitational collapse of 1 M⊙ gas clouds through the first hydrostatic core to stellar densities. The clouds are imposed with both rotational and turbulent velocities, and are threaded with a magnetic field that is parallel/antiparallel or perpendicular to the rotation axis; we investigate two rotation rates and four Mach numbers. The initial radius and mass of the stellar core are only weakly dependent on the initial parameters. In the models that include ideal MHD, the magnetic field strength implanted in the protostar at birth is much higher than observed, independent of the initial level of turbulence; only non-ideal MHD can reduce this strength to near or below the observed levels. This suggests that not only is ideal MHD an incomplete picture of star formation, but that the magnetic fields in low mass stars are implanted later in life by a dynamo process. Non-ideal MHD suppresses magnetically launched stellar core outflows, but turbulence permits thermally launched outflows to form a few years after stellar core formation.


Sign in / Sign up

Export Citation Format

Share Document