A double core in the Auriga-California Molecular Cloud

2018 ◽  
Vol 14 (S345) ◽  
pp. 335-336
Author(s):  
Sarolta Zahorecz ◽  
Daniel Molnar ◽  
Alex Kraus ◽  
Toshikazu Onishi

AbstractPlanck cold clump G163.82-8.44 is part of the Auriga-California Molecular Cloud. It was observed with Herschel PACS and SPIRE instruments as part of the Herschel open time key programme Galactic Cold Cores. Follow-up ground-based molecular line observation of NH3 was performed to the densest part of the filament with the Effelsberg-100m telescope. We detected two different velocity components with a separation of 0.5 km/s. We performed radiative transfer modeling with two 3-dimensional spheres to characterise the temperature and density of the dense cores. We have found that the temperatures of the two cores are almost the same, 10.8 K and 11.1 K and their mass and size ratios are 1:10 and 1:5, respectively.

2012 ◽  
Vol 8 (S292) ◽  
pp. 115-115
Author(s):  
Erika Verebelyi ◽  
Laurent Pagani

AbstractWe have compiled a sample of 106 lesser-known cores from the Herschel Galactic Cold Cloud Cores Key Program (Juvela, M. et al. 2007). Based on the assumption, that these represent the crowd of the cold cores in the galaxy well, we have started a deep individual investigation, beginning with a ground-based follow-up and molecular line measurement at IRAM 30m telescope. We present the methods and calculated values of the most important parameters on a selected source: the G130.38+11.25 molecular cloud, which is part of the L1340.


2021 ◽  
pp. 002203452199936
Author(s):  
C. Wiedemann ◽  
C. Pink ◽  
A. Daboul ◽  
S. Samietz ◽  
H. Völzke ◽  
...  

The aims of this study were to 1) determine if continuous eruption occurs in the maxillary teeth, 2) assess the magnitude of the continuous eruption, and 3) evaluate the effects of continuous eruption on the different periodontal parameters by using data from the population-based cohort of the Study of Health in Pomerania (SHIP). The jaw casts of 140 participants from the baseline (SHIP-0) and 16-y follow-up (SHIP-3) were digitized as 3-dimensional models. Robust reference points were set to match the tooth eruption stage at SHIP-0 and SHIP-3. Reference points were set on the occlusal surface of the contralateral premolar and molar teeth, the palatal fossa of an incisor, and the rugae of the hard palate. Reference points were combined to represent 3 virtual occlusal planes. Continuous eruption was measured as the mean height difference between the 3 planes and rugae fix points at SHIP-0 and SHIP-3. Probing depth, clinical attachment levels, gingiva above the cementoenamel junction (gingival height), and number of missing teeth were clinically assessed in the maxilla. Changes in periodontal variables were regressed onto changes in continuous eruption after adjustment for age, sex, number of filled teeth, and education or tooth wear. Continuous tooth eruption >1 mm over the 16 y was found in 4 of 140 adults and averaged to 0.33 mm, equaling 0.021 mm/y. In the total sample, an increase in continuous eruption was significantly associated with decreases in mean gingival height ( B = −0.34; 95% CI, −0.65 to −0.03). In a subsample of participants without tooth loss, continuous eruption was negatively associated with PD. This study confirmed that continuous eruption is clearly detectable and may contribute to lower gingival heights in the maxilla.


2007 ◽  
Vol 668 (2) ◽  
pp. 1042-1063 ◽  
Author(s):  
Helen Kirk ◽  
Doug Johnstone ◽  
Mario Tafalla
Keyword(s):  

2002 ◽  
Vol 80 (4) ◽  
pp. 443-454 ◽  
Author(s):  
J R Pardo ◽  
M Ridal ◽  
D Murtagh ◽  
J Cernicharo

The Odin satellite is equipped with millimetre and sub-millimetre receivers for observations of several molecular lines in the middle and upper atmosphere of our planet (~25–100 km, the particular altitude range depending on the species) for studies in dynamics, chemistry, and energy transfer in these regions. The same receivers are also used to observe molecules in outer space, this being the astrophysical share of the project. Among the atmospheric lines that can be observed, we find two corresponding to molecular oxygen (118.75 GHz and 487.25 GHz). These lines can be used for retrievals of the atmospheric temperature vertical profile. In this paper, we describe the radiative-transfer modeling for O2 in the middle and upper atmosphere that we will use as a basis for the retrieval algorithms. Two different observation modes have been planned for Odin, the three-channel operational mode and a high-resolution mode. The first one will determine the temperature and pressure on an operational basis using the oxygen line at 118.75 GHz, while the latter can be used for measurements of both O2 lines, during a small fraction of the total available time for aeronomy, aimed at checking the particular details of the radiative transfer near O2 lines at very high altitudes (>70 km). The Odin temperature measurements are expected to cover the altitude range ~30–90 km. PACS Nos.: 07.57Mj, 94.10Dy, 95.75Rs


Sign in / Sign up

Export Citation Format

Share Document