Ionized gas kinematics and luminosity profiles of Low-z Lyman Alpha Blobs

2019 ◽  
Vol 15 (S359) ◽  
pp. 413-414
Author(s):  
María P. Agüero ◽  
Rubén Díaz ◽  
Mischa Schirmer

AbstractThis work is focused on the characterization of the Seyfert-2 galaxies hosting very large, ultra-luminous narrow-line regions (NLRs) at redshifts z = 0.2−0.34. With a space density of 4.4 Gcp−3 at z ∼ 0.3, these “Low Redshift Lyman-α Blob” (LAB) host galaxies are amongst the rarest objects in the universe, and represent an exceptional and short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). We present the study of GMOS spectra for 13 LAB galaxies covering the rest frame spectral range 3700–6700 Å. Predominantly, the [OIII]λ5007 emission line radial distribution is as widespread as that of the continuum one. The emission line profiles exhibit FWHM between 300–700 Km s−1. In 7 of 13 cases a broad kinematical component is detected with FWHM within the range 600–1100 Km s−1. The exceptionally high [OIII]λ5007 luminosity is responsible for very high equivalent width reaching 1500 Å at the nucleus.

2020 ◽  
Vol 492 (4) ◽  
pp. 4680-4696 ◽  
Author(s):  
Dominika Wylezalek ◽  
Anthony M Flores ◽  
Nadia L Zakamska ◽  
Jenny E Greene ◽  
Rogemar A Riffel

ABSTRACT The prevalence of outflow and feedback signatures in active galactic nuclei (AGNs is a major unresolved question which large integral field unit (IFU) surveys now allow to address. In this paper, we present a kinematic analysis of the ionized gas in 2778 galaxies at z ∼ 0.05 observed by Sloan Digital Sky Survey-IV (SDSS-IV) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). Specifically, we measure the kinematics of the [O iii] λ5007 Å emission line in each spatial element and fit multiple Gaussian components to account for possible non-gravitational motions of gas. Comparing the kinematics of the ionized gas between 308 MaNGA-selected AGNs that have been previously identified through emission-line diagnostics and sources not classified as AGN, we find that while 25 per cent of MaNGA-selected AGN show [O iii] components with emission-line widths of >500 km s−1 in more than 10 per cent of their spaxels, only 7 per cent of MaNGA non-AGNs show a similar signature. Even the AGNs that do not show nuclear AGN photoionization signatures and that were only identified as AGN based on their larger scale photoionization signatures show similar kinematic characteristics. In addition to obscuration, another possibility is that outflow and mechanical feedback signatures are longer lived than the AGN itself. Our measurements demonstrate that high velocity gas is more prevalent in AGN compared to non-AGN and that outflow and feedback signatures in low-luminosity, low-redshift AGN may so far have been underestimated. We show that higher luminosity MaNGA-selected AGNs are able to drive larger scale outflows than lower luminosity AGN. But estimates of the kinetic coupling efficiencies are ≪1 per cent and suggest that the feedback signatures probed in this paper are unlikely to have a significant impact on the AGN host galaxies. However, continuous energy injection may still heat a fraction of the cool gas and delay or suppress star formation in individual galaxies even when the AGN is weak.


2020 ◽  
Vol 635 ◽  
pp. A41
Author(s):  
Jan Florian ◽  
Bodo Ziegler ◽  
Michaela Hirschmann ◽  
Polychronis Papaderos ◽  
Ena Choi ◽  
...  

Context. Powerful active galactic nuclei (AGN) are supposed to play a key regulatory role on the evolution of their host galaxies by shaping the thermodynamic properties of their gas component. However, little is known as to the nature and the visibility timescale of the kinematical imprints of AGN-driven feedback. Gaining theoretical and observational insights into this subject is indispensable for a thorough understanding of the AGN-galaxy coevolution and could yield empirical diagnostics for the identification of galaxies that have experienced a major AGN episode in the past. Aims. We present an investigation of kinematical imprints of AGN feedback on the warm ionized gas medium (WIM) of massive early-type galaxies (ETGs). To this end, we take a two-fold approach that involves a comparative analysis of Hα velocity fields in 123 local ETGs from the CALIFA (Calar Alto Legacy Integral Field Area Survey) integral field spectroscopy survey with 20 simulated galaxies from high-resolution hydrodynamic cosmological SPHgal simulations. The latter were resimulated for two modeling setups, one with and another without AGN feedback. Methods. In order to quantify the effects of AGN feedback on gas kinematics, we measured three parameters that probe deviations from simple regular rotation by using the kinemetry package. These indicators trace the possible presence of distinct kinematic components in Fourier space (k3, 5/k1), variations in the radial profile of the kinematic major axis (σPA), and offsets between the stellar and gas velocity fields (Δϕ). These quantities were monitored in the simulations from a redshift 3 to 0.2 to assess the connection between black hole accretion history, stellar mass growth, and the kinematical perturbation of the WIM. Results. Observed local massive galaxies show a broad range of irregularities, indicating disturbed warm gas motions, which is irrespective of being classified via diagnostic lines as AGN or not. Simulations of massive galaxies with AGN feedback generally exhibit higher irregularity parameters than without AGN feedback, which is more consistent with observations. Besides AGN feedback, other processes like major merger events or infalling gas clouds can lead to elevated irregularity parameters, but they are typically of shorter duration. More specifically, k3, 5/k1 is most sensitive to AGN feedback, whereas Δϕ is most strongly affected by gas infall. Conclusions. We conclude that even if the general disturbance of the WIM velocity is not a unique indicator for AGN feedback, irregularity parameters that are high enough to be consistent with observations can only be reproduced in simulations with AGN feedback. Specifically, an elevated value for the deviation from simple ordered motion is a strong sign for previous events of AGN activity and feedback.


2019 ◽  
Vol 489 (2) ◽  
pp. 1973-1985 ◽  
Author(s):  
Guinevere Kauffmann ◽  
Claudia Maraston

ABSTRACT We have analysed the emission-line properties of 6019 Type II active galactic nuclei (AGNs) at redshifts in the range 0.4–0.8 with [O iii] luminosities greater than $3 \times 10^8 \, \mathrm{L}_{\odot }$, characteristic of the Type II quasars first identified in population studies by Zakamska et al. The AGNs are drawn from the CMASS sample of galaxies with stellar masses greater than $10^{11} \, \mathrm{M}_{\odot }$ that were studied as part of the Baryon Oscillation Spectroscopic Survey (BOSS) and comprise 0.5 per cent of the total population of these galaxies. Individual spectra have low S/N, so the analysis is carried out on stacked spectra in bins of [O iii] luminosity and estimated stellar age. The emission line ratios of the stacks are well fit with simple uniform-density photoionization models with metallicities between solar and twice solar. In the stacks, a number of emission lines are found to have distinct broad components requiring a double Gaussian rather than a single Gaussian fit, indicative of outflowing ionized gas. These are: [O iii] λ4959, [O iii] λ5007, [O ii] λ3727,3729, and H αλ6563. Higher ionization lines such as [Ne iii] λ3869 and [Ne v] λ3345 are detected in the stacks, but are well fit by single Gaussians. The broad components typically contain a third of the total line flux and have widths of 600 km s−1 for the oxygen lines and 900 km s−1 for H α. The fraction of the flux in the broad component and its width are independent of [O iii] luminosity, stellar age, radio, and mid-IR luminosity. The stellar mass of the galaxy is the only parameter we could identify that influences the width of the broad line component.


2019 ◽  
Vol 489 (4) ◽  
pp. 4926-4943 ◽  
Author(s):  
M Glowacki ◽  
J R Allison ◽  
V A Moss ◽  
E K Mahony ◽  
E M Sadler ◽  
...  

ABSTRACT Obscuration of quasars by accreted gas and dust, or dusty intervening galaxies, can cause active galactic nuclei (AGN) to be missed in optically selected surveys. Radio observations can overcome this dust bias. In particular, radio surveys searching for H i absorption inform us on how the AGN can impact on the cold neutral gas medium within the host galaxy, or the population of intervening galaxies through the observed line of sight gas kinematics. We present the results of an H i absorption line survey at 0.4 < z < 1 towards 34 obscured quasars with the Australian SKA Pathfinder (ASKAP) commissioning array. We detect three H i absorption lines, with one of these systems previously unknown. Through optical follow-up for two sources, we find that in all detections the H i gas is associated with the AGN, and hence that these AGN are obscured by material within their host galaxies. Most of our sample are compact, and in addition, are either gigahertz peaked spectrum (GPS), or steep spectrum (CSS) sources, both thought to represent young or recently re-triggered radio AGN. The radio spectral energy distribution classifications for our sample agree with galaxy evolution models in which the obscured AGN has only recently become active. Our associated H i detection rate for GPS and compact SS sources matches those of other surveys towards such sources. We also find shallow and asymmetric H i absorption features, which agrees with previous findings that the cold neutral medium in compact radio galaxies is typically kinematically disturbed by the AGN.


2019 ◽  
Vol 631 ◽  
pp. A132 ◽  
Author(s):  
S. J. Molyneux ◽  
C. M. Harrison ◽  
M. E. Jarvis

Using a sample of 2922 z <  0.2, spectroscopically identified active galactic nuclei (AGN), we explore the relationship between radio size and the prevalence of extreme ionised outflows, as traced using broad [O III] emission-line profiles in spectra obtained by the Sloan Digital Sky Survey (SDSS). To classify radio sources as compact or extended, we combined a machine-learning technique for morphological classification with size measurements from two-dimensional Gaussian models to data from all-sky radio surveys. We find that the two populations have statistically different [O III] emission-line profiles; the compact sources tend to have the most extreme gas kinematics. When the radio emission is confined within 3″ (i.e. within the spectroscopic fibre or ≲5 kpc at the median redshift), the chance of observing broad [O III] emission-line components, which are indicative of very high velocity outflows and have a full width at half-maximum > 1000 km s−1, is twice as high. This difference is greatest for the highest radio luminosity bin of log[L1.4 GHz/W Hz−1] = 23.5−24.5 where the AGN dominate the radio emission; specifically, > 1000 km s−1 components are almost four times as likely to occur when the radio emission is compact in this subsample. Our follow-up ≈0.3″–1″ resolution radio observations for a subset of targets in this luminosity range reveal that radio jets and lobes are prevalent, and suggest that compact jets might be responsible for the stronger outflows in the wider sample. Our results are limited by the available relatively shallow all-sky radio surveys, but forthcoming surveys will provide a more complete picture of the connection between radio emission and outflows. Overall, our results add to the growing body of evidence that ionised outflows and compact radio emission in highly accreting “radiative” AGN are closely connected, possibly as a result of young or weak radio jets.


2009 ◽  
Vol 5 (S267) ◽  
pp. 231-238
Author(s):  
Marcella Brusa

AbstractOver the last few years, the existence of mutual feedback effects between accreting supermassive black holes powering AGN and star formation in their host galaxies has become evident. This means that the formation and the evolution of AGN and galaxies should be considered as one and the same problem. As a consequence, the search for, and the characterization of the evolutionary and physical properties of AGN over a large redshift interval is a key topic of present research in the field of observational cosmology. Significant advances have been obtained in the last ten years thanks to the sizable number of XMM–Newton and Chandra surveys, complemented by multiwavelength follow-up programs. I will present some of the recent results and the ongoing efforts (mostly from the COSMOS and CDFS surveys) aimed at obtaining a complete census of accreting black holes in the universe, and a characterization of the properties of the host galaxies.


2019 ◽  
Vol 490 (3) ◽  
pp. 4344-4352
Author(s):  
Jiren Liu ◽  
Sebastian F Hönig ◽  
Claudio Ricci ◽  
Stéphane Paltani

ABSTRACT Recent mid-infrared interferometry observations of nearby active galactic nuclei (AGN) revealed that a significant part of the dust emission extends in the polar direction, rather than the equatorial torus/disc direction as expected by the traditional unification model. We study the X-ray signatures of this polar dusty gas with ray-tracing simulations. Different from those from the ionized gas, the scattered emission from the polar dusty gas produces self-absorption and neutral-like fluorescence lines, which are potentially a unique probe of the kinematics of the polar dusty gas. The anomalously small Fe Kα/Si Kα ratios of type 2 AGN observed previously can be naturally explained by the polar dusty gas, because the polar emission does not suffer from heavy absorption by the dense equatorial gas. The observed Si Kα lines of the Circinus galaxy and NGC 1068 show blueshifts with respect to the systemic velocities of the host galaxies, consistent with an outflowing scenario of the Si Kα-emitting gas. The 2.5–3 keV image of the Circinus galaxy is elongated along the polar direction, consistent with an origin of the polar gas. These results show that the polar-gas-scattered X-ray emission of type 2 AGN is an ideal objective for future X-ray missions, such as Athena.


2020 ◽  
Vol 500 (4) ◽  
pp. 4849-4865
Author(s):  
Klemen Čotar ◽  
Tomaž Zwitter ◽  
Gregor Traven ◽  
Joss Bland-Hawthorn ◽  
Sven Buder ◽  
...  

ABSTRACT We present a neural network autoencoder structure that is able to extract essential latent spectral features from observed spectra and then reconstruct a spectrum from those features. Because of the training with a set of unpeculiar spectra, the network is able to reproduce a spectrum of high signal-to-noise ratio that does not show any spectral peculiarities, even if they are present in an observed spectrum. Spectra generated in this manner were used to identify various emission features among spectra acquired by multiple surveys using the HERMES spectrograph at the Anglo-Australian telescope. Emission features were identified by a direct comparison of the observed and generated spectra. Using the described comparison procedure, we discovered 10 364 candidate spectra with varying intensities (from partially filled-in to well above the continuum) of the Hα/Hβ emission component, produced by different physical mechanisms. A fraction of these spectra belong to the repeated observation that shows temporal variability in their emission profile. Among the emission spectra, we find objects that feature contributions from a nearby rarefied gas (identified through the emission of [N ii] and [S ii] lines) that was identified in 4004 spectra, which were not all identified as having Hα emission. The positions of identified emission-line objects coincide with multiple known regions that harbour young stars. Similarly, detected nebular emission spectra coincide with visually prominent nebular clouds observable in the red all-sky photographic composites.


2019 ◽  
Vol 15 (S359) ◽  
pp. 221-225
Author(s):  
A. Rodríguez-Ardila ◽  
M. A. Fonseca-Faria

AbstractWe employ optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) combined with X-ray and radio data to study the highly-ionized gas (HIG) phase of the feedback in a sample of five local nearby Active Galactic Nuclei (AGN). Thanks to the superb field of view and sensitivity of MUSE, we found that the HIG, traced by the coronal line [Fe vii] λ6089, extends to scales not seen before, from 700 pc in Circinus and up to ∼2 kpc in NGC 5728 and NGC 3393. The gas morphology is complex, following closely the radio jet and the X-ray emission. Emission line ratios suggest gas excitation by shocks produced by the passage of the radio jet. This scenario is further supported by the physical conditions derived for the HIG, stressing the importance of the mechanical feedback in AGN with low-power radio jets.


2019 ◽  
Vol 15 (S359) ◽  
pp. 272-273
Author(s):  
M. A. Fonseca-Faria ◽  
A. Rodríguez-Ardila

AbstractWe employ Multi Unit Spectroscopic Explorer (MUSE) data to study the ionized and very ionized gas phase of the feedback in Circinus, the closest Seyfert 2 galaxy. The analysis of the nebular emission allowed us to detect a remarkable high-ionization gas outflow, out of the galaxy plane, traced by the coronal lines [Fe viii] 6089Å and [Fe x] 6374Å, extending up to 700 parsecs north-west from the nucleus. The gas kinematics reveal expanding gas shells with velocities of a few hundred km s-1, spatially coincident with prominent hard X-ray emission detected by Chandra. Density and temperature sensitive line ratios show that the extended high-ionization gas is characterized by a temperature of up to 18000 K and a gas density of ne > 102 cm−3. We propose two scenarios consistent with the observations to explain the high-ionization component of the outflow: an active galactic nuclei (AGN) ejection that took place ⁓105 yr ago or local gas excitation by shocks produced by the passage of a radio jet.


Sign in / Sign up

Export Citation Format

Share Document