cool gas
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 34)

H-INDEX

19
(FIVE YEARS 8)

2021 ◽  
Vol 923 (2) ◽  
pp. 275
Author(s):  
Serena Perrotta ◽  
Erin R. George ◽  
Alison L. Coil ◽  
Christy A. Tremonti ◽  
David S. N. Rupke ◽  
...  

Abstract We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive (M * ∼ 1011 M ⊙), compact starburst galaxies at z = 0.4–0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean ΣSFR ∼ 2000 M ⊙ yr−1 kpc−2) and powerful galactic outflows (maximum speeds v 98 ∼ 1000–3000 km s−1). Our unique data set includes an ensemble of both emission ([O ii] λλ3726,3729, Hβ, [O iii] λλ4959,5007, Hα, [N ii] λλ6549,6585, and [S ii] λλ6716,6731) and absorption (Mg ii λλ2796,2803, and Fe ii λ2586) lines that allow us to investigate the kinematics of the cool gas phase (T ∼ 104 K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median n e ∼ 530 cm−3), and high metallicity (solar or supersolar). We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [S ii] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.


2021 ◽  
Vol 923 (2) ◽  
pp. 200
Author(s):  
Chian-Chou Chen ◽  
Fabrizio Arrigoni Battaia ◽  
Bjorn H. C. Emonts ◽  
Matthew D. Lehnert ◽  
J. Xavier Prochaska

Abstract We present ALMA observations on and around the radio-quiet quasar UM 287 at z = 2.28. Together with a companion quasar, UM 287 is believed to play a major role in powering the surrounding enormous Lyα nebula (ELAN), dubbed the Slug ELAN, that has an end-to-end size of 450 physical kpc. In addition to the quasars, we detect a new dusty star-forming galaxy (DSFG), dubbed the Slug-DSFG, in 2 mm continuum with a single emission line consistent with CO(4−3). The Slug-DSFG sits at a projected distance of 100 kpc southeast from UM 287, with a systemic velocity difference of −360 ± 30 km s−1 with respect to UM 287, suggesting it is a possible contributor to the powering of the Slug ELAN. With careful modeling of the SED and dynamical analyses, it is found that the Slug-DSFG and UM 287 appear low in both gas fraction and gas-to-dust ratio, suggesting environmental effects due to the host’s massive halo. In addition, our Keck long-slit spectra reveal significant Lyα emissions from the Slug-DSFG, as well as a Lyα tail that starts at the location and velocity of the Slug-DSFG and extends toward the south, with a projected length of about 100 kpc. Supported by various analytical estimates we propose that the Lyα tail is a result of the Slug-DSFG experiencing ram pressure stripping. The gas mass stripped is estimated to be about 109 M ⊙, contributing to the dense warm/cool gas reservoir that is believed to help power the exceptional Lyα luminosity.


2021 ◽  
Vol 648 ◽  
pp. A32
Author(s):  
D. Kleiner ◽  
P. Serra ◽  
F. M. Maccagni ◽  
A. Venhola ◽  
K. Morokuma-Matsui ◽  
...  

We present MeerKAT neutral hydrogen (H I) observations of the Fornax A group, which is likely falling into the Fornax cluster for the first time. Our H I image is sensitive to 1.4 × 1019 atoms cm−2 over 44.1 km s−1, where we detect H I in 10 galaxies and a total of (1.12 ± 0.02) × 109 M⊙ of H I in the intra-group medium (IGM). We search for signs of pre-processing in the 12 group galaxies with confirmed optical redshifts that reside within the sensitivity limit of our H I image. There are 9 galaxies that show evidence of pre-processing and we classify each galaxy into their respective pre-processing category, according to their H I morphology and gas (atomic and molecular) scaling relations. Galaxies that have not yet experienced pre-processing have extended H I discs and a high H I content with a H2-to-H I ratio that is an order of magnitude lower than the median for their stellar mass. Galaxies that are currently being pre-processed display H I tails, truncated H I discs with typical gas fractions, and H2-to-H I ratios. Galaxies in the advanced stages of pre-processing are the most H I deficient. If there is any H I, they have lost their outer H I disc and efficiently converted their H I to H2, resulting in H2-to-H I ratios that are an order of magnitude higher than the median for their stellar mass. The central, massive galaxy in our group (NGC 1316) underwent a 10:1 merger ∼2 Gyr ago and ejected 6.6−11.2 × 108 M⊙ of H I, which we detect as clouds and streams in the IGM, some of which form coherent structures up to ∼220 kpc in length. We also detect giant (∼100 kpc) ionised hydrogen (Hα) filaments in the IGM, likely from cool gas being removed (and subsequently ionised) from an in-falling satellite. The Hα filaments are situated within the hot halo of NGC 1316 and there are localised regions that contain H I. We speculate that the Hα and multiphase gas is supported by magnetic pressure (possibly assisted by the NGC 1316 AGN), such that the hot gas can condense and form H I that survives in the hot halo for cosmological timescales.


Author(s):  
Clémence Fontanive ◽  
Daniella Bardalez Gagliuffi

We present results from an extensive search in the literature and Gaia DR2 for visual co-moving binary companions to stars hosting exoplanets and brown dwarfs within 200 pc. We found 218 planet hosts out of the 938 in our sample to be part of multiple-star systems, with 10 newly discovered binaries and 2 new tertiary stellar components. This represents an overall raw multiplicity rate of 23.2 ± 1.6 % for hosts to exoplanets across all spectral types, with multi-planet systems found to have a lower stellar duplicity frequency at the 2.2-σ level. We found that more massive hosts are more often in binary configurations, and that planet-bearing stars in multiple systems are predominantly observed to be the most massive component of stellar binaries. Investigations of the multiplicity of planetary systems as a function of planet mass and separation revealed that giant planets with masses above 0.1 MJup are more frequently seen in stellar binaries than small sub-Jovian planets with a 3.6-σ difference, a trend enhanced for the most massive (>7 MJup) short-period (<0.5 AU) planets and brown dwarf companions. Binarity was however found to have no significant effect on the demographics of low- mass planets (<0.1 MJup) or warm and cool gas giants (>0.5 AU). While stellar companion mass appears to have no impact on planet properties, binary separation seems to be an important factor in the resulting structure of planetary systems. Stellar companions on separations <1000 AU can play a role in the formation or evolution of massive, close-in planets, while planets in wider binaries show similar properties to planets orbiting single stars. Finally, our analyses indicate that numerous stellar companions on separations smaller than 1–3 arcsec likely remain undiscovered to this date. Continuous efforts to complete our knowledge of stellar multiplicity on separations of tens to hundreds of AU are essential to confirm the reported trends and further our understanding of the roles played by multiplicity on exoplanets.


Author(s):  
S M Stach ◽  
I Smail ◽  
A Amvrosiadis ◽  
A M Swinbank ◽  
U Dudzevičiūtė ◽  
...  

Abstract We present an analysis of the spatial clustering of a large sample of high-resolution, interferometically identified, submillimetre galaxies (SMGs). We measure the projected cross-correlation function of ∼ 350 SMGs in the UKIDSS Ultra Deep-Survey Field across a redshift range of z = 1.5–3 utilising a method that incorporates the uncertainties in the redshift measurements for both the SMGs and cross-correlated galaxies through sampling their full probability distribution functions. By measuring the absolute linear bias of the SMGs we derive halo masses of $\log _{10}(M_{\rm halo}[{h^{-1}\, \rm M_{\odot }}])$ ∼ 12.8 with no evidence of evolution in the halo masses with redshift, contrary to some previous work. From considering models of halo mass growth rates we predict that the SMGs will reside in haloes of mass $\log _{10}(M_{\rm halo}[{h^{-1}\, \rm M_{\odot }}])$ ∼ 13.2 at z = 0, consistent with the expectation that the majority of z = 1.5–3 SMGs will evolve into present-day spheroidal galaxies. Finally, comparing to models of stellar-to-halo mass ratios, we show that SMGs may correspond to systems that are maximally efficient at converting their gas reservoirs into stars. We compare them to a simple model for gas cooling in halos that suggests that the unique properties of the SMG population, including their high levels of star-formation and their redshift distribution, are a result of the SMGs being the most massive galaxies that are still able to accrete cool gas from their surrounding intragalactic medium.


2021 ◽  
Vol 908 (2) ◽  
pp. 188
Author(s):  
Hai Fu ◽  
R. Xue ◽  
J. X. Prochaska ◽  
A. Stockton ◽  
S. Ponnada ◽  
...  
Keyword(s):  

2021 ◽  
Vol 502 (4) ◽  
pp. 4743-4761 ◽  
Author(s):  
Yun-Hsin Huang ◽  
Hsiao-Wen Chen ◽  
Stephen A Shectman ◽  
Sean D Johnson ◽  
Fakhri S Zahedy ◽  
...  

ABSTRACT This paper presents a survey of Mg ii absorbing gas in the vicinity of 380 random galaxies, using 156 background quasi-stellar objects (QSOs) as absorption-line probes. The sample comprises 211 isolated (73 quiescent and 138 star-forming galaxies) and 43 non-isolated galaxies with sensitive constraints for both Mg ii absorption and H α emission. The projected distances span a range from d = 9 to 497 kpc, redshifts of the galaxies range from z = 0.10 to 0.48, and rest-frame absolute B-band magnitudes range from MB = −16.7 to −22.8. Our analysis shows that the rest-frame equivalent width of Mg ii, Wr(2796), depends on halo radius (Rh), B-band luminosity(LB), and stellar mass (Mstar) of the host galaxies, and declines steeply with increasing d for isolated, star-forming galaxies. At the same time, Wr(2796) exhibits no clear trend for either isolated, quiescent galaxies or non-isolated galaxies. In addition, the covering fraction of Mg ii absorbing gas 〈κ〉 is high with 〈κ〉 ≳ 60 per cent at <40 kpc for isolated galaxies and declines rapidly to 〈κ〉 ≈ 0 at d ≳ 100 kpc. Within the gaseous radius, the incidence of Mg ii gas depends sensitively on both Mstar and the specific star formation rate inferred from H α. Different from what is known for massive quiescent haloes, the observed velocity dispersion of Mg ii absorbing gas around star-forming galaxies is consistent with expectations from virial motion, which constrains individual clump mass to $m_{\rm cl} \gtrsim 10^5 \, \rm M_\odot$ and cool gas accretion rate of $\sim 0.7\!-\!2 \, \mathrm{ M}_\odot \, \rm yr^{-1}$. Finally, we find no strong azimuthal dependence of Mg ii absorption for either star-forming or quiescent galaxies. Our results demonstrate that multiple parameters affect the properties of gaseous haloes around galaxies and highlight the need of a homogeneous, absorption-blind sample for establishing a holistic description of chemically enriched gas in the circumgalactic space.


Author(s):  
Andrea Afruni ◽  
Filippo Fraternali ◽  
Gabriele Pezzulli

Abstract The characterization of the large amount of gas residing in the galaxy halos, the so called circumgalactic medium (CGM), is crucial to understand galaxy evolution across cosmic time. We focus here on the the cool (T ∼ 104 K) phase of this medium around star-forming galaxies in the local universe, whose properties and dynamics are poorly understood. We developed semi-analytical parametric models to describe the cool CGM as an outflow of gas clouds from the central galaxy, as a result of supernova explosions in the disc (galactic wind). The cloud motion is driven by the galaxy gravitational pull and by the interactions with the hot (T ∼ 106 K) coronal gas. Through a bayesian analysis, we compare the predictions of our models with the data of the COS-Halos and COS-GASS surveys, which provide accurate kinematic information of the cool CGM around more than 40 low-redshift star-forming galaxies, probing distances up to the galaxy virial radii. Our findings clearly show that a supernova-driven outflow model is not suitable to describe the dynamics of the cool circumgalactic gas. Indeed, to reproduce the data, we need extreme scenarios, with initial outflow velocities and mass loading factors that would lead to unphysically high energy coupling from the supernovae to the gas and with supernova efficiencies largely exceeding unity. This strongly suggests that, since the outflows cannot reproduce most of the cool gas absorbers, the latter are likely the result of cosmological inflow in the outer galaxy halos, in analogy to what we have previously found for early-type galaxies.


Author(s):  
Ezra Huscher ◽  
Benjamin D Oppenheimer ◽  
Alice Lonardi ◽  
Robert A Crain ◽  
Alexander J Richings ◽  
...  

Abstract We present an analysis of the physical and dynamical states of two sets of EAGLE zoom simulations of galaxy haloes, one at high redshift (z = 2 − 3) and the other at low redshift (z = 0), with masses of ≈1012 M⊙. Our focus is how the circumgalactic medium (CGM) of these L* star-forming galaxies change over the last 10 Gyr. We find that the high-z CGM is almost equally divided between the “cool” (T < 105 K) and “hot” (T ≥ 105 K) phases, while at low-z the hot CGM phase contains 5 × more mass than the cool phase. The high-z hot CGM contains 60% more metals than the cool CGM, while the low-z cool CGM contains 35% more metals than the hot CGM. The metals are evenly distributed radially between the hot and cool phases throughout the high-z CGM. At high z, the CGM volume is dominated by hot outflows, but also contains cool gas mainly inflowing and cool metals mainly outflowing. At low z, the cool metals dominate the interior and the hot metals are more prevalent at larger radii. The low-z cool CGM has tangential motions consistent with rotational support out to 0.2R200, often exhibiting r ≈ 40 kpc disc-like structures. The low-z hot CGM has several times greater angular momentum than the cool CGM, and a more flattened radial density profile than the high-z hot CGM. This study verifies that, just as galaxies demonstrate significant transformations over cosmic time, the gaseous haloes surrounding them also undergo considerable changes of their own both in physical characteristics of density, temperature, and metallicity, and dynamic properties of velocity and angular momentum.


2020 ◽  
Vol 902 (1) ◽  
pp. 37 ◽  
Author(s):  
A. B. Drake ◽  
F. Walter ◽  
M. Novak ◽  
E. P. Farina ◽  
M. Neeleman ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document