A panchromatic spatially resolved study of the inner 500 pc of NGC 1052

2019 ◽  
Vol 15 (S359) ◽  
pp. 427-428
Author(s):  
Luis G. Dahmer-Hahn ◽  
Rogério Riffel ◽  
Tiago V. Ricci ◽  
João E. Steiner ◽  
Thaisa Storchi-Bergmann ◽  
...  

AbstractWe analyzed the inner 320 × 535 pc2 of the elliptical galaxy NGC 1052 with integral field spectroscopy, both in the optical and in the near-infrared (NIR). The stellar population analysis revealed a dominance of old stellar populations from the optical data, and an intermediate-age ring from NIR data. When combining optical+NIR data, optical results were favoured. The emission-line analysis revealed five kinematic components, where two of them are unresolved and probably associated with the active galactic nucleus (AGN), one is associated with large-scale shocks, one with the radio jets, and the last could be explained by either a bipolar outflow, rotation in an eccentric disc or a combination of a disc and large-scale gas bubbles. Our results also indicate that the emission within the galaxy is caused by a combination of shocks and photoionization by the AGN.

2019 ◽  
Vol 489 (4) ◽  
pp. 5653-5668 ◽  
Author(s):  
L G Dahmer-Hahn ◽  
R Riffel ◽  
T V Ricci ◽  
J E Steiner ◽  
T Storchi-Bergmann ◽  
...  

ABSTRACT We map the optical and near-infrared (NIR) emission-line flux distributions and kinematics of the inner 320 × 535 pc2 of the elliptical galaxy NGC 1052. The integral field spectra were obtained with the Gemini Telescope using the GMOS-IFU and NIFS instruments, with angular resolutions of 0.88 and 0.1 arcsec in the optical and NIR, respectively. We detect five kinematic components: (1) and (2) two spatially unresolved components: a broad-line region visible in H α, with a full width at half-maximum (FWHM) of ∼3200 km s−1, and an intermediate broad component seen in the [O iii] λλ4959,5007 doublet; (3) an extended intermediate-width component with 280 km s−1 < FWHM < 450 km s−1 and centroid velocities up to 400 km s−1, which dominates the flux in our data, attributed either to a bipolar outflow related to the jets, rotation in an eccentric disc or to a combination of a disc and large-scale gas bubbles; (4) and (5) two narrow (FWHM < 150 km s−1) components, one visible in [O iii], and another visible in the other emission lines, extending beyond the field of view of our data, which is attributed to large-scale shocks. Our results suggest that the ionization within the observed field of view cannot be explained by a single mechanism, with photoionization being the dominant mechanism in the nucleus with a combination of shocks and photoionization responsible for the extended ionization.


2020 ◽  
Vol 495 (4) ◽  
pp. 4638-4658 ◽  
Author(s):  
Sree Oh ◽  
Matthew Colless ◽  
Stefania Barsanti ◽  
Sarah Casura ◽  
Luca Cortese ◽  
...  

ABSTRACT We investigate the stellar kinematics of the bulge and disk components in 826 galaxies with a wide range of morphology from the Sydney-AAO Multi-object Integral-field spectroscopy Galaxy Survey. The spatially resolved rotation velocity (V) and velocity dispersion (σ) of bulge and disk components have been simultaneously estimated using the penalized pixel fitting (ppxf) method with photometrically defined weights for the two components. We introduce a new subroutine of ppxf for dealing with degeneracy in the solutions. We show that the V and σ distributions in each galaxy can be reconstructed using the kinematics and weights of the bulge and disk components. The combination of two distinct components provides a consistent description of the major kinematic features of galaxies over a wide range of morphological types. We present Tully–Fisher and Faber–Jackson relations showing that the galaxy stellar mass scales with both V and σ for both components of all galaxy types. We find a tight Faber–Jackson relation even for the disk component. We show that the bulge and disk components are kinematically distinct: (1) the two components show scaling relations with similar slopes, but different intercepts; (2) the spin parameter λR indicates bulges are pressure-dominated systems and disks are supported by rotation; and (3) the bulge and disk components have, respectively, low and high values in intrinsic ellipticity. Our findings suggest that the relative contributions of the two components explain, at least to first order, the complex kinematic behaviour of galaxies.


2019 ◽  
Vol 627 ◽  
pp. A53 ◽  
Author(s):  
B. Husemann ◽  
J. Scharwächter ◽  
T. A. Davis ◽  
M. Pérez-Torres ◽  
I. Smirnova-Pinchukova ◽  
...  

Context. Galaxy-wide outflows driven by star formation and/or an active galactic nucleus (AGN) are thought to play a crucial rule in the evolution of galaxies and the metal enrichment of the inter-galactic medium. Direct measurements of these processes are still scarce and new observations are needed to reveal the nature of outflows in the majority of the galaxy population. Aims. We combine extensive, spatially-resolved, multi-wavelength observations, taken as part of the Close AGN Reference Survey (CARS), for the edge-on disc galaxy HE 1353−1917 in order to characterise the impact of the AGN on its host galaxy via outflows and radiation. Methods. Multi-color broad-band photometry was combined with spatially-resolved optical, near-infrared (NIR) and sub-mm and radio observations taken with the Multi-Unit Spectroscopy Explorer (MUSE), the Near-infrared Integral Field Spectrometer (NIFS), the Atacama Large Millimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to map the physical properties and kinematics of the multi-phase interstellar medium. Results. We detect a biconical extended narrow-line region ionised by the luminous AGN orientated nearly parallel to the galaxy disc, extending out to at least 25 kpc. The extra-planar gas originates from galactic fountains initiated by star formation processes in the disc, rather than an AGN outflow, as shown by the kinematics and the metallicity of the gas. Nevertheless, a fast, multi-phase, AGN-driven outflow with speeds up to 1000 km s−1 is detected close to the nucleus at 1 kpc distance. A radio jet, in connection with the AGN radiation field, is likely responsible for driving the outflow as confirmed by the energetics and the spatial alignment of the jet and multi-phase outflow. Evidence for negative AGN feedback suppressing the star formation rate (SFR) is mild and restricted to the central kpc. But while any SFR suppression must have happened recently, the outflow has the potential to greatly impact the future evolution of the galaxy disc due to its geometrical orientation. Conclusions.. Our observations reveal that low-power radio jets can play a major role in driving fast, multi-phase, galaxy-scale outflows even in radio-quiet AGN. Since the outflow energetics for HE 1353−1917 are consistent with literature, scaling relation of AGN-driven outflows the contribution of radio jets as the driving mechanisms still needs to be systematically explored.


2009 ◽  
Vol 5 (S267) ◽  
pp. 290-298 ◽  
Author(s):  
Thaisa Storchi-Bergmann

AbstractI report recent results on the kinematics of the inner few hundred parsecs (pc) around nearby active galactic nuclei (AGN) at a sampling of a few pc to a few tens of pc, using optical and near-infrared (near-IR) integral field spectroscopy obtained with the Gemini telescopes. The stellar kinematics of the hosts — comprised mostly of spiral galaxies — are dominated by circular rotation in the plane of the galaxy. Inflows with velocities of ~50 km s−1 have been observed along nuclear spiral arms in (optical) ionized gas emission for low-luminosity AGN and in (near-IR) molecular gas emission for higher-luminosity AGN. We have also observed gas rotating in the galaxy plane, sometimes in compact (few tens of pc) disks which may be fuelling the AGN. Outflows have been observed mostly in ionized gas emission from the narrow-line region, whose flux distributions and kinematics frequently correlate with radio flux distributions. Channel maps along the emission-line profiles reveal velocities as high as ~ 600 km s−1. Mass outflow rates in ionized gas range from 10−2 to 10−3M⊙ yr−1 and are 10–100 times larger than the mass accretion rates on to the AGN, supporting an origin for the bulk of the outflow in gas from the galaxy plane entrained by a nuclear jet or accretion disk wind.


2013 ◽  
Vol 9 (S304) ◽  
pp. 252-252
Author(s):  
Richard Davies

AbstractIntegral field spectroscopy provides us with immensely rich datasets about spatially resolved distributions and kinematics of emission and absorption lines. In this contribution I will describe some of the key insights that have been made about AGN using optical, near infrared, and far infrared IFUs. These encompass gas inflow and outflow mechanisms, and the relations between star formation, the torus, and accretion onto the black hole. Progress so far has largely relied on archetypal and small sets of objects. In the future, a more statistically robust approach will be required. I will end by discussing a number of issues that can easily confuse an emerging picture, and need to be borne in mind for such surveys.


Author(s):  
Gitika Shukla ◽  
Raghunathan Srianand ◽  
Neeraj Gupta ◽  
Patrick Petitjean ◽  
Andrew J Baker ◽  
...  

Abstract We use Southern African Large Telescope (SALT) to perform long-slit spectroscopic observations of 23 newly discovered radio-loud quasars (RLQs) at 2.7 &lt; z &lt; 3.3. The sample consists of powerful AGN brighter than 200 mJy at 1.4 GHz and is selected on the basis of mid-infrared colors i.e., unbiased to the presence of dust. We report 7 confirmed and 5 tentative detections of diffuse Lyα emission in the sample. We present the properties of diffuse Lyα emission and discuss in detail its relationship to different quasar properties. We find strong dependence of Lyα halo detection rate on the extent of radio source, spectral luminosity of RLQ at 420 MHz (L420MHz), presence of associated C IV absorption and nuclear He II emission line equivalent width. As seen in previous surveys, the FWHM of diffuse Lyα emission in the case of confirmed detections are much higher (i.e.&gt;1000 km/s in all, except one). Using the samples of high-z radio-loud quasars and galaxies from literature, we confirm the correlation between the Lyα halo luminosity and its size with L420MHz. The same quantities are found to be correlating weakly with the projected linear size of the radio emission. Our sample is the second largest sample of RLQs being studied for the presence of diffuse Lyα emission and fills in a redshift gap between previous such studies. Integral Field Spectroscopy is required to fully understand the relationship between the large scale radio emission and the overall distribution, kinematics and over density of Lyα emission in the field of these RLQs.


2006 ◽  
pp. 330-333
Author(s):  
Andrew Bunker ◽  
Annette Ferguson ◽  
Rachel Johnson ◽  
Richard McMahon ◽  
Ian Parry ◽  
...  

2017 ◽  
Vol 470 (2) ◽  
pp. 1703-1717 ◽  
Author(s):  
Suzi I. F. Diniz ◽  
Miriani G. Pastoriza ◽  
Jose A. Hernandez-Jimenez ◽  
Rogerio Riffel ◽  
Tiago V. Ricci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document