scholarly journals NONASSOCIATIVE SUBSTRUCTURAL LOGICS AND THEIR SEMILINEAR EXTENSIONS: AXIOMATIZATION AND COMPLETENESS PROPERTIES

2013 ◽  
Vol 6 (3) ◽  
pp. 394-423 ◽  
Author(s):  
PETR CINTULA ◽  
ROSTISLAV HORČÍK ◽  
CARLES NOGUERA

AbstractSubstructural logics extending the full Lambek calculus FL have largely benefited from a systematical algebraic approach based on the study of their algebraic counterparts: residuated lattices. Recently, a nonassociative generalization of FL (which we call SL) has been studied by Galatos and Ono as the logic of lattice-ordered residuated unital groupoids. This paper is based on an alternative Hilbert-style presentation for SL which is almost MP-based. This presentation is then used to obtain, in a uniform way applicable to most (both associative and nonassociative) substructural logics, a form of local deduction theorem, description of filter generation, and proper forms of generalized disjunctions. A special stress is put on semilinear substructural logics (i.e., logics complete with respect to linearly ordered algebras). Axiomatizations of the weakest semilinear logic over SL and other prominent substructural logics are provided and their completeness with respect to chains defined over the real unit interval is proved.

2007 ◽  
Vol 72 (3) ◽  
pp. 834-864 ◽  
Author(s):  
George Metcalfe ◽  
Franco Montagna

AbstractSubstructural fuzzy logics are substructural logics that are complete with respect to algebras whose lattice reduct is the real unit interval [0, 1]. In this paper, we introduce Uninorm logic UL as Multiplicative additive intuitionistic linear logic MAILL extended with the prelinearity axiom ((A → B) ∧ t) V ((B → A)∧ t). Axiomatic extensions of UL include known fuzzy logics such as Monoidal t-norm logic MIX and Gödel logic G, and new weakening-free logics. Algebraic semantics for these logics are provided by subvarieties of (representable) pointed bounded commutative residuated lattices. Gentzen systems admitting cut-elimination are given in the framework of hypersequents. Completeness with respect to algebras with lattice reduct [0, 1] is established for UL and several extensions using a two-part strategy. First, completeness is proved for the logic extended with Takeuti and Titani's density rule. A syntactic elimination of the rule is then given using a hypersequent calculus. As an algebraic corollary, it follows that certain varieties of residuated lattices are generated by their members with lattice reduct [0, 1].


2020 ◽  
Vol 26 (3) ◽  
pp. 1-12
Author(s):  
Martin Kalina ◽  

Paving is a method for constructing new operations from a given one. Kalina and Kral in 2015 showed that on the real unit interval this method can be used to construct associative, commutative and monotone operations from particular given operations (from basic ‘paving stones’). In the present paper we modify the construction method for interval-valued fuzzy sets. From given (possibly representable) t-norms and t-conorms we construct new, non-representable operations. In the last section, we modify the presented construction method for interval-valued intuitionistic fuzzy sets.


1987 ◽  
Vol 36 (3) ◽  
pp. 469-474 ◽  
Author(s):  
Bau-Sen Du

Let I be the unit interval [0, 1] of the real line. For integers k ≥ 1 and n ≥ 2, we construct simple piecewise monotonic expanding maps Fk, n in C0 (I, I) with the following three properties: (1) The positive integer n is an expanding constant for Fk, n for all k; (2) The topological entropy of Fk, n is greater than or equal to log n for all k; (3) Fk, n has periodic points of least period 2k · 3, but no periodic point of least period 2k−1 (2m+1) for any positive integer m. This is in contrast to the fact that there are expanding (but not piecewise monotonic) maps in C0(I, I) with very large expanding constants which have exactly one fixed point, say, at x = 1, but no other periodic point.


1969 ◽  
Vol 16 (3) ◽  
pp. 205-214
Author(s):  
Gavin Brown

Let n be a positive integer. We give an elementary construction for the nth variation, Vn(f), of a real valued continuous function f and prove an analogue of the classical Jordan decomposition theorem. In fact, let C[0, 1] denote the real valued continuous functions on the closed unit interval, let An denote the semi-algebra of non-negative functions in C[0, 1] whose first n differences are non-negative, and let Sn denote the difference algebra An - An. We show that Sn is precisely that subset of C[0, 1] on which Vn(f)<∞. (Theorem 1).


Author(s):  
Mayuka F. Kawaguchi ◽  
◽  
Michiro Kondo ◽  

This research report treats a correspondence between implicational fragment logics and fuzzy logics from the viewpoint of their algebraic semantics. The authors introduce monotone BI-algebras by loosening the axiomatic system of BCK-algebras. We also extend the algebras of fuzzy logics with weakly-associative conjunction from the case of the real unit interval to the case of a partially ordered set. As the main result of this report, it is proved that the class of monotone BI-algebras with condition (S) coincides with the class of weakly-associative conjunctive algebras.


10.29007/ngp3 ◽  
2018 ◽  
Author(s):  
Agata Ciabattoni ◽  
Revantha Ramanayake

We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut-elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large class of logics extending the distributive commutative Full Lambek calculus DFLe and Bunched Implication logic BI. The methodology is then used to formulate new logics equipped with a cutfree calculus in the vicinity of Boolean BI.


2006 ◽  
Vol 71 (4) ◽  
pp. 1353-1384 ◽  
Author(s):  
Nikolaos Galatos ◽  
Hiroakira Ono

AbstractIt is well known that classical propositional logic can be interpreted in intuitionistic prepositional logic. In particular Glivenko's theorem states that a formula is provable in the former iff its double negation is provable in the latter. We extend Glivenko's theorem and show that for every involutive substructural logic there exists a minimum substructural logic that contains the first via a double negation interpretation. Our presentation is algebraic and is formulated in the context of residuated lattices. In the last part of the paper, we also discuss some extended forms of the Koltnogorov translation and we compare it to the Glivenko translation.


Sign in / Sign up

Export Citation Format

Share Document