A compact microstrip low-pass filter with ultra wide stopband using compact microstrip resonant cells

2016 ◽  
Vol 9 (5) ◽  
pp. 1023-1027 ◽  
Author(s):  
Saeed Roshani

In this paper, a novel compact microstrip low-pass filter (LPF) with ultra wide stop band and sharp roll off, is proposed. In the proposed structure, a high impedance transmission line is loaded by compact microstrip resonant cells, which results in ultra wide stopband. The −3 dB cut-off frequency of filter is 1.5 GHz and the maximum insertion loss is <0.1 dB in the passband. The proposed LPF presents extremely wide stopband from 1.68 to 44 GHz, with more than the −20 dB attenuation level, which suppresses the 2nd to 29th harmonics with high rejection levels. The size of the proposed LPF is only 0.1 λg × 0.19 λg, which shows excellent size reduction. There is a good agreement between the simulated and measured results.

Author(s):  
Badr Nasiri ◽  
Ahmed Errkik ◽  
Jamal Zbitou ◽  
Abdelali Tajmouati ◽  
Larbi El Abdellaoui ◽  
...  

In this work, a novel design of a Microstrip Low-pass filter based on metamaterial square split ring resonators (SRRs) is proposed. The SRRs has been added to obtain a reduced size and high performances. The filter is designed on an FR-4 substrate having a thickness of 1.6mm, a dielectric constant of 4.4 and loss tangent of 0.025. The proposed low-pass filter is characterized by a cutoff frequency of 2.4 GHz and an attenuation level below than -20dB in the stopband. The LPF is designed, simulated and optimized by using two electromagnetic solvers CST microwave studio and ADS. The computed results obtained by both solvers are in good agreement. The total surface area of the proposed circuit is 18x18mm2 excluding the feed line, its size is miniaturized by 40% compared to the conventional filter. The experimental results illustrate that the filter achieves very good electrical performances in the passband with a low insertion loss of 0.2 dB. Moreover, a suppression level can reach more than 35 dB in the rejected band.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shu Jiang ◽  
Wenbo Wang ◽  
Le Ren

Abstract A microstrip planar lowpass filter with ultra-wide stopband up to 40 GHz is presented. The filter is designed based on four types of hexagonal-shaped resonators, producing multiple transmission zeroes and extending the stopband. The high-impedance transmission line is folded to make the circuit more compact and form the coupling gaps between the adjacent resonators. A pair of folded open stubs are added to enhance the cut-off rate. As a result, an ultra-wide stopband with 23rd-harmonic suppression has been attained. A demonstration filter has been designed and fabricated with 3 dB cut-off frequency of 1.70 GHz. The measured results show that the relative stop bandwidth of the low-pass filter (LPF) is 182% with suppression level of 25 dB, covering 1.85–40 GHz. The functional area size of the filter is 21.50 × 21.70 mm, which corresponds to 0.198λ g  × 0.200λ g (λ g is the guided wavelength at 3 dB cut-off frequency).


Frequenz ◽  
2018 ◽  
Vol 72 (5-6) ◽  
pp. 221-226 ◽  
Author(s):  
Jia-Jia Wu ◽  
Lin Li

AbstractIn this paper, a compact low-pass filter (LPF) with wide stopband is proposed based on interdigital capacitor loaded hairpin resonator. The structure composed of an upper high-impedance transmission line, a middle interdigital capacitor, and a pair of inter-coupled symmetrical stepped-impedance stubs. Detailed investigation into this structure based on even-odd mode approach reveals that up to four transmission zeros can be generated and reallocated by choosing the proper circuit parameters. And owing to the aid of transmission zeros, the fabricated quasi-elliptic LPFs experimentally demonstrate a wide 20dB stopband from 1.4fcto 5.1fcusing a compact size of only 0.005 λg2.


Author(s):  
Б.А. Беляев ◽  
С.А. Ходенков ◽  
И.В. Говорун ◽  
А.М. Сержантов

New microstrip designs of bandpass filters based on a low-pass filter was developed. Several or all the sections of high-impedance microstrip lines of the designed filters were connected to the ground by stubs. The filters have high frequency-selective properties, and their fractional bandwidths are in the range of 30 % –150 %. An experimental sample of a filter with a 2 GHz central frequency of the passband and 70% fractional bandwidth was made on an alumina substrate 1 mm thick. The filter has a substrate area of 46 × 21 mm2. Good agreement of the measured frequency response of the filter with the characteristics calculated by the numerical electrodynamic analysis of its 3D model was shown.


Author(s):  
Adel Musavy ◽  
Akram Sheikhi

In this paper, a low pass filter based on T-Shaped resonator is presented. The T-Shaped resonator consists of meandered lines and rectangular patches. Also, the LC model and transfer function of the proposed resonator is presented. For suppression of spurious harmonics, a bandstop structure consists of hexangular patches and open stubs has been utilized. Finally, the wide stopband microstrip lowpass filter with cutoff frequency 2.72 GHz has been simulated, fabricated and measured. The LPF has good characteristics such as wide stopband and insertion loss lower than 0.18 dB in the passband region. The rejection level is less than -20 dB from 2.98 up to 21.3 GHz. The filter size is 10.5 mm×12.7 mm, or 0.131 λ<sub>g</sub>× 0.158 λ<sub>g</sub>, where λ<sub>g</sub> is the guided wavelength. The measured and simulated results of the filter is in good agreement with each other, which show the merits of low insertion loss and wide stopband.


2013 ◽  
Vol 273 ◽  
pp. 371-374
Author(s):  
Bao Ping Li ◽  
Yan Liang Zhang

Due to the frequency response periodicity of distributed transmission line, microstrip band-pass filter usually produces parasitic pass-band and outputs harmonics away from the center frequency of main pass-band. Based on the study of rectangular ring defected ground structure, a 5-order microstrip LPF(low-pass filter) was designed using the single-pole band-stop and slow-wave characteristics of the rectangular ring DGS(Defected Ground Structure) and SISS(Step-Impedance Shunt Stub) structure. Compared with traditional LPF, this LPF presents the advantages of compact size, low insertion loss, broad stop-band and high steep. It also validates the requirements of miniaturization and high performance for filters.


2013 ◽  
Vol 562-565 ◽  
pp. 1132-1136
Author(s):  
Xiao Wei Liu ◽  
Jian Yang ◽  
Song Chen ◽  
Liang Liu ◽  
Rui Zhang ◽  
...  

In this paper, we design a high-order switched capacitor filter for rapid change parameter converter. This design uses a structure which consists of three biquads filter sub-units. The design is a 6th-order SC elliptic low-pass filter, and the sample frequency is 250 kHz. By the MATLAB Simulink simulation, the system can meet the design requirements in the time domain. In this paper, the 6th-order switched capacitor elliptic low-pass filter was implemented under 0.5 um CMOS process and simulated in Cadence. The final simulation results show that the pass-band cutoff frequency is 10 kHz, and the maximum pass-band ripple is about 0.106 dB. The stop-band cutoff frequency is 20 kHz, and the minimum stop-band attenuation is 74.78 dB.


2019 ◽  
Vol 11 (08) ◽  
pp. 792-796
Author(s):  
Luping Li ◽  
Lijuan Dong ◽  
Peng Chen ◽  
Kai Yang

AbstractThis paper presents a low insertion loss low-pass filter based on the spoof surface plasmon polariton (SSPP) with single comb-shape. Compared with traditional ones, the proposed filter provides lower insertion loss and return loss by optimizing the structural parameters of the mode conversion and SSPP parts. According to the measurement results, the average insertion loss of the fabricated filter is 0.41 dB and the return loss of which at the near-zero-hertz band is &lt;−25.9 dB. The S parameter comparison result between the unoptimized and optimized filters demonstrates that the optimized filter provides lower insertion loss and return loss, smaller size, and better out-of-band rejection. The dispersion comparison result reveals the reasons behind the improved performances. The better performances of the optimized filter proves that breaking the regularity of traditional SSPP filters is beneficial to the filter's performances.


Sign in / Sign up

Export Citation Format

Share Document