scholarly journals On Square Roots and Logarithms of Self-Adjoint Operators

1958 ◽  
Vol 4 (1) ◽  
pp. 1-2 ◽  
Author(s):  
C. R. Putnam

All operators considered in this paper are bounded and linear (everywhere defined) on a Hilbert space. An operator A will be called a square root of an operator B ifA simple sufficient condition guaranteeing that any solution A of (1) be normal whenever B is normal was obtained in [1], namely: If B is normal and if there exists some real angle θ for which Re(Aeιθ)≥0, then (1) implies that A is normal. Here, Re (C) denotes the real part ½(C + C*) of an operator C.

1970 ◽  
Vol 22 (1) ◽  
pp. 134-150 ◽  
Author(s):  
C. R. Putnam

Suppose that(1.1)and define the bounded self-adjoint operators H and J on the Hilbert space L2(0, 1) by(1.2)the integral being a Cauchy principal valueIt is seen that(1.3)or, equivalently,(1.4)Since (Cƒ, ƒ) = π–1|(ƒ, ϕ)|2 ≧ 0, A is semi-normal. (For a discussion of such operators, see [4].)


1979 ◽  
Vol 22 (3) ◽  
pp. 277-290 ◽  
Author(s):  
Garret J. Etgen ◽  
Roger T. Lewis

Let ℋ be a Hilbert space, let ℬ = (ℋ, ℋ) be the B*-algebra of bounded linear operators from ℋ to ℋ with the uniform operator topology, and let ℒ be the subset of ℬ consisting of the self-adjoint operators. This article is concerned with the second order self-adjoint differential equation


2018 ◽  
Vol 1 (1) ◽  
pp. 60
Author(s):  
Razis Aji Saputro ◽  
Susilo Hariyanto ◽  
Y.D. Sumanto

Pre-Hilbert space is a vector space equipped with an inner-product. Furthermore, if each Cauchy sequence in a pre-Hilbert space is convergent then it can be said complete and it called as Hilbert space. The accretive operator is a linear operator in a Hilbert space. Accretive operator is occurred if the real part of the corresponding inner product will be equal to zero or positive. Accretive operators are also associated with non-negative self-adjoint operators. Thus, an accretive operator is said to be strict if there is a positive number such that the real part of the inner product will be greater than or equal to that number times to the squared norm value of any vector in the corresponding Hilbert Space. In this paper, we prove that a strict accretive operator is an accretive operator.


1990 ◽  
Vol 108 (2) ◽  
pp. 409-416 ◽  
Author(s):  
David Race

AbstractConditions are given on the real coefficients p, q and r and the weight w, for the fourth order formally symmetric differential expressionto have the properties of being strong limit-2 and Dirichlet at ∞, when considered in the weighted Hilbert space, . These extend existing results due to both W. N. Everitt and V. Krishna Kumar and cover an expression which is important in the study of certain orthogonal polynomials.


2019 ◽  
Vol 31 (04) ◽  
pp. 1950013 ◽  
Author(s):  
Valter Moretti ◽  
Marco Oppio

As earlier conjectured by several authors and much later established by Solèr, from the lattice-theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. On the other hand, no quantum systems seem to exist that are naturally described in a real or quaternionic Hilbert space. In a previous paper [23], we showed that any quantum system which is elementary from the viewpoint of the Poincaré symmetry group and it is initially described in a real Hilbert space, it can also be described within the standard complex Hilbert space framework. This complex description is unique and more precise than the real one as, for instance, in the complex description, all self-adjoint operators represent observables defined by the symmetry group. The complex picture fulfils the thesis of Solér’s theorem and permits the standard formulation of the quantum Noether’s theorem. The present work is devoted to investigate the remaining case, namely, the possibility of a description of a relativistic elementary quantum system in a quaternionic Hilbert space. Everything is done exploiting recent results of the quaternionic spectral theory that were independently developed. In the initial part of this work, we extend some results of group representation theory and von Neumann algebra theory from the real and complex cases to the quaternionic Hilbert space case. We prove the double commutant theorem also for quaternionic von Neumann algebras (whose proof requires a different procedure with respect to the real and complex cases) and we extend to the quaternionic case a result established in the previous paper concerning the classification of irreducible von Neumann algebras into three categories. In the second part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a quaternionic Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the quaternionic one, all self-adjoint operators represent observables in agreement with Solèr’s thesis, the standard quantum version of Noether theorem may be formulated and the notion of composite system may be given in terms of tensor product of elementary systems. In the third part of the paper, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. The overall conclusion is that relativistic elementary systems are naturally and better described in complex Hilbert spaces even if starting from a real or quaternionic Hilbert space formulation and this complex description is uniquely fixed by physics.


1980 ◽  
Vol 88 (3) ◽  
pp. 451-468 ◽  
Author(s):  
L. E. Fraenkel

This paper concerns the boundary-value problemsin which λ is a real parameter, u is to be a real-valued function in C2[0, 1], and problem (I) is that with the minus sign. (The differential operators are called semi-linear because the non-linearity is only in undifferentiated terms.) If we linearize the equations (for ‘ small’ solutions u) by neglecting , there result the eigenvalues λ = n2π2 (with n = 1,2,…) and corresponding normalized eigenfunctionsand it is well known ((2), p. 186) that the sequence {en} is complete in that it is an orthonormal basis for the real Hilbert space L2(0, 1). We shall be concerned with possible extensions of this result to the non-linear problems (I) and (II), for which non-trivial solutions (λ, u) bifurcate from the trivial solution (λ, 0) at the points {n2π2,0) in the product space × L2(0, 1). (Here denotes the real line.)


1986 ◽  
Vol 38 (5) ◽  
pp. 1135-1148 ◽  
Author(s):  
G. McDonald ◽  
C. Sundberg

Putnam showed in [5] that the spectrum of the real part of a bounded subnormal operator on a Hilbert space is precisely the projection of the spectrum of the operator onto the real line. (In fact he proved this more generally for bounded hyponormal operators.) We will show that this result can be extended to the class of unbounded subnormal operators with bounded real parts.Before proceeding we establish some notation. If T is a (not necessarily bounded) operator on a Hilbert space, then D(T) will denote its domain, and σ(T) its spectrum. For K a subspace of D(T), T|K will denote the restriction of T to K. Norms of bounded operators and elements in Hilbert spaces will be indicated by ‖ ‖. All Hilbert space inner products will be written 〈,〉. If W is a set in C, the closure of W will be written clos W, the topological boundary will be written bdy W, and the projection of W onto the real line will be written π(W),


Author(s):  
M. F. Atiyah ◽  
V. K. Patodi ◽  
I. M. Singer

In Parts I and II of this paper ((4), (5)) we studied the ‘spectral asymmetry’ of certain elliptic self-adjoint operators arising in Riemannian geometry. More precisely, for any elliptic self-adjoint operator A on a compact manifold we definedwhere λ runs over the eigenvalues of A. For the particular operators of interest in Riemannian geometry we showed that ηA(s) had an analytic continuation to the whole complex s-plane, with simple poles, and that s = 0 was not a pole. The real number ηA(0), which is a measure of ‘spectral asymmetry’, was studied in detail particularly in relation to representations of the fundamental group.


2016 ◽  
Vol 100 (549) ◽  
pp. 420-428
Author(s):  
Ulrich Abel

In a recent Note [1] Michael D. Hirschhorn presented high order algorithms for calculating numerically square roots and cube roots. In particular, he obtained the method(1)with , where the convergence is of tenth order:We recall his idea in the case of an arbitrary square root with a > 0. Let p ⩾ 2 be a fixed integer. Our starting point is the relationChoose


Author(s):  
Z. Bohte

SynopsisThis paper studies two particular cases of the general 2-parameter eigenvalue problem namelywhere A, B, B1, B2, C, C1, C2 are self-adjoint operators in Hilbert space, all except A being bounded. The disposable parameters λ and μ have to be determined so that the equations have non-trivial solutions x, y.On the assumption that the solution is known for ∊ = o, solutions are constructed in the form of series for λ, μ, x, y as power series in ∊ with finite radius of convergence.


Sign in / Sign up

Export Citation Format

Share Document