Design of a fast rotational chopper for X-ray pump–probe experiments at Diamond Light Source

2010 ◽  
Vol 1 (MEDSI-6) ◽  
Author(s):  
Luis Varandas ◽  
Andrew Peach ◽  
Kevin Collins ◽  
Brian Nutter

New trends in X-ray crystallography are concerned with the study of transient conditions of atomic structures, which take place after an energy activation agent is introduced. These time-resolved experiments require a fast mechanical shutter to interrupt the X-ray beam in a pump–probe cycle, with the aim to generate a stroboscopic effect. Thus, only diffraction data that are representative of the activated structure are actually collected. A rotating type of shutter, also known as chopper, is presented with the purpose to enable time-resolved experiments to be performed at I19 small-molecule single-crystal diffraction beamline. Exceptional stability in the rotational speed is critical to achieve the desired stroboscopic effect with minimum jitter. This requirement can be addressed only through design by the specification of suitable components and implementation of high-precision methods in manufacturing. The proposed equipment is comprised of a spindle supported on air bearings coupled to a slotted disc rotating inside a vacuum enclosure and driven by a brushless servo motor. Advanced control features are proposed to ensure that speed stability is achieved. Preliminary tests produced very encouraging results, giving strong indication that the chopper satisfies the specifications required for time-resolved experiments.

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Ki Hyun Nam

Serial crystallography (SX) is an emerging technique to determine macromolecules at room temperature. SX with a pump–probe experiment provides the time-resolved dynamics of target molecules. SX has developed rapidly over the past decade as a technique that not only provides room-temperature structures with biomolecules, but also has the ability to time-resolve their molecular dynamics. The serial femtosecond crystallography (SFX) technique using an X-ray free electron laser (XFEL) has now been extended to serial synchrotron crystallography (SSX) using synchrotron X-rays. The development of a variety of sample delivery techniques and data processing programs is currently accelerating SX research, thereby increasing the research scope. In this editorial, I briefly review some of the experimental techniques that have contributed to advances in the field of SX research and recent major research achievements. This Special Issue will contribute to the field of SX research.


1997 ◽  
Vol 30 (5) ◽  
pp. 555-556 ◽  
Author(s):  
G. Kurisu ◽  
A. Sugimoto ◽  
Y. Kai ◽  
S. Harada

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 854
Author(s):  
Ki Hyun Nam

Radiation damage and cryogenic sample environment are an experimental limitation observed in the traditional X-ray crystallography technique. However, the serial crystallography (SX) technique not only helps to determine structures at room temperature with minimal radiation damage, but it is also a useful tool for profound understanding of macromolecules. Moreover, it is a new tool for time-resolved studies. Over the past 10 years, various sample delivery techniques and data collection strategies have been developed in the SX field. It also has a wide range of applications in instruments ranging from the X-ray free electron laser (XFEL) facility to synchrotrons. The importance of the various approaches in terms of the experimental techniques and a brief review of the research carried out in the field of SX has been highlighted in this editorial.


2019 ◽  
Vol 6 (2) ◽  
pp. 024101
Author(s):  
Athiya Mahmud Hanna ◽  
Oriol Vendrell ◽  
Robin Santra
Keyword(s):  

2019 ◽  
Vol 9 (9) ◽  
pp. 1941 ◽  
Author(s):  
Kai-Jun Yuan ◽  
André D Bandrauk

Electron coherence is a fundamental quantum phenomenon in today’s ultrafast physics and chemistry research. Based on attosecond pump–probe schemes, ultrafast X-ray photoelectron imaging of molecules was used to monitor the coherent electron dynamics which is created by an XUV pulse. We performed simulations on the molecular ion H 2 + by numerically solving time-dependent Schrödinger equations. It was found that the X-ray photoelectron angular and momentum distributions depend on the time delay between the XUV pump and soft X-ray probe pulses. Varying the polarization and helicity of the soft X-ray probe pulse gave rise to a modulation of the time-resolved photoelectron distributions. The present results provide a new approach for exploring ultrafast coherent electron dynamics and charge migration in reactions of molecules on the attosecond time scale.


2006 ◽  
Vol 153 (3) ◽  
pp. 300-306 ◽  
Author(s):  
William R. Wikoff ◽  
James F. Conway ◽  
Jinghua Tang ◽  
Kelly K. Lee ◽  
Lu Gan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document