scholarly journals 3-D FOSSILS FOR K–12 EDUCATION: A CASE EXAMPLE USING THE GIANT EXTINCT SHARKCARCHAROCLES MEGALODON

2016 ◽  
Vol 22 ◽  
pp. 197-209 ◽  
Author(s):  
Claudia A. Grant ◽  
Bruce J. MacFadden ◽  
Pavlo Antonenko ◽  
Victor J. Perez

AbstractFossils and the science of paleontology provide a charismatic gateway to integrate STEM teaching and learning. With the new Next Generation Science Standards (NGSS), as well as the exponentially increasing use of three-dimensional (3-D) printing and scanning technology, it is a particularly opportune time to integrate a wider variety of fossils and paleontology into K–12 curricula. We describe a curricular prototype that integrates all four components of STEM (Science, Technology, Engineering, Math) into authentic research using dentitions of the Neogene giant shark Megalodon (Carcharocles megalodon Agassiz, 1843). This prototype has been implemented in two middle and two high schools in California and Florida. Consistent with prior evidence-based research, student engagement increases when they have hands-on experiences with fossils, particularly with a charismatic species such as Megalodon. Access to museum specimens helps students understand big ideas in ‘Deep Time.’ In addition to engaging students in authentic STEM practices and scaffolding development of content knowledge, paleontology is an integrative science that connects and informs socially relevant topics, including long-term (macro-) evolution and climate change. The application of 3-D printing and scanning to develop curricula using fossils has immense potential in K–12 schools in the U.S.

Author(s):  
Nicholas H. Wasserman

Contemporary technologies have impacted the teaching and learning of mathematics in significant ways, particularly through the incorporation of dynamic software and applets. Interactive geometry software such as Geometers Sketchpad (GSP) and GeoGebra has transformed students' ability to interact with the geometry of plane figures, helping visualize and verify conjectures. Similar to what GSP and GeoGebra have done for two-dimensional geometry in mathematics education, SketchUp™ has the potential to do for aspects of three-dimensional geometry. This chapter provides example cases, aligned with the Common Core State Standards in mathematics, for how the dynamic and unique features of SketchUp™ can be integrated into the K-12 mathematics classroom to support and aid students' spatial reasoning and knowledge of three-dimensional figures.


Author(s):  
Karen L. Rasmussen

Reusable Learning Object technology offers K-12 teachers and students the opportunity to access resources that can be used and reused in classroom teaching and learning environments. A support tool for teachers, QuickScience™, was developed to help teachers and students improve performance in science standards; resources in QuickScience™ are built upon RLO technologies. Six types of RLOs, including five types of instructional resources aligned to Bloom’s taxonomy, are used by teachers to help students improve their performance in science. QuickScience™ offers teachers a model for improving performance, including steps of diagnose, plan, teach, and assess.


2018 ◽  
Vol 41 (1) ◽  
pp. 29-36
Author(s):  
Jeffrey Daniel Radloff ◽  
Anthony Chase

Indiana science standards conceptualize science, engineering, and computer science towards two main goals: preparing students with adequate knowledge and skills to pursue science careers, and helping students develop into scientifically literate citizens capable of fully engaging with socio-scientific issues. Meeting these goals requires an understanding of how to contextualize science skills and content for application outside the classroom: teaching beyond the test towards students' future needs and interests. They need to make connections between science taught in the classroom with their own lives. One strategy for doing so is by utilizing expansive framing, a way of making this connection more tangible towards increasing relevancy and engagement with science. Here, we discuss expansive framing, how it works, and how it can be easily utilized in the K-12 science classroom. We follow up with considerations and implications for effective science teaching and learning.


Author(s):  
Lizette A. Burks ◽  
Douglas Huffman

The new science and engineering practice of developing and using models is needed to achieve the vision of three-dimensional teaching and learning and should be an important new component of teacher preparation programs. This chapter examined critical thinking and preservice teachers' preconceptions about critical thinking and the practice of developing and using models. The results of the study indicated that when preservice teachers initially described how this practice might look in the classroom, only two of the six categories outlined in A Science Framework for K-12 Science Education for this practice were described by most participants. Of those two categories described by most participants, the majority were at a novice level. These results emphasize the necessity for elementary teacher education to provide opportunities for preservice teachers to better understand the practice of developing and using models, and how critical thinking can help teachers use models.


2020 ◽  
Author(s):  
Steven Essinger ◽  
Ryan Coote ◽  
Pete Konstantopoulos ◽  
Jason Silverman ◽  
Gail Rosen

Author(s):  
Sharin Rawhiya Jacob ◽  
Mark Warschauer ◽  
◽  

Today’s students will enter a workforce that is powerfully shaped by computing. To be successful in a changing economy, students must learn to think algorithmically and computationally, to solve problems with varying levels of abstraction. These computational thinking skills have become so integrated into social function as to represent fundamental literacies. However, computer science has not been widely taught in K-12 schools. Efforts to create computer science standards and frameworks have yet to make their way into mandated course requirements. Despite a plethora of research on digital literacies, research on the role of computational thinking in the literature is sparse. This conceptual paper proposes a three dimensional framework for exploring the relationship between computational thinking and literacy through: 1) situating computational thinking in the literature as a literacy; 2) outlining mechanisms by which students’ existing literacy skills can be leveraged to foster computational thinking; and 3) elaborating ways in which computational thinking skills facilitate literacy development.


Author(s):  
C.L. Woodcock

Despite the potential of the technique, electron tomography has yet to be widely used by biologists. This is in part related to the rather daunting list of equipment and expertise that are required. Thanks to continuing advances in theory and instrumentation, tomography is now more feasible for the non-specialist. One barrier that has essentially disappeared is the expense of computational resources. In view of this progress, it is time to give more attention to practical issues that need to be considered when embarking on a tomographic project. The following recommendations and comments are derived from experience gained during two long-term collaborative projects.Tomographic reconstruction results in a three dimensional description of an individual EM specimen, most commonly a section, and is therefore applicable to problems in which ultrastructural details within the thickness of the specimen are obscured in single micrographs. Information that can be recovered using tomography includes the 3D shape of particles, and the arrangement and dispostion of overlapping fibrous and membranous structures.


2020 ◽  
Vol 36 (06) ◽  
pp. 696-702
Author(s):  
Nolan B. Seim ◽  
Enver Ozer ◽  
Sasha Valentin ◽  
Amit Agrawal ◽  
Mead VanPutten ◽  
...  

AbstractResection and reconstruction of midface involve complex ablative and reconstructive tools in head and oncology and maxillofacial prosthodontics. This region is extraordinarily important for long-term aesthetic and functional performance. From a reconstructive standpoint, this region has always been known to present challenges to a reconstructive surgeon due to the complex three-dimensional anatomy, the variable defects created, combination of the medical and dental functionalities, and the distance from reliable donor vessels for free tissue transfer. Another challenge one faces is the unique features of each individual resection defect as well as individual patient factors making each preoperative planning session and reconstruction unique. Understanding the long-term effects on speech, swallowing, and vision, one should routinely utilize a multidisciplinary approach to resection and reconstruction, including head and neck reconstructive surgeons, prosthodontists, speech language pathologists, oculoplastic surgeons, dentists, and/or craniofacial teams as indicated and with each practice pattern. With this in mind, we present our planning and reconstructive algorithm in midface reconstruction, including a dedicated focus on dental rehabilitation via custom presurgical planning.


Long-term experience of application of a method of electric heating by heating wires of the monolithic concrete and reinforced concrete structures erected in winter conditions is analyzed. This method, developed by the author of the article, took a dominant position on the construction sites due to the simplicity and efficiency in comparison with the mass applied in those years, the method of electric heating of concrete with steel round and strip electrodes. The data on labor intensity, material and energy costs in comparison with the method of rod electric heating are presented. Step-by-step technological operations on preparatory works and electric heating of monolithic structures with the use of extensive hands-on material, which formed the basis for the development of technological regulations, supplemented by a number of new proposals to improve the technology of works, are concretized. In order to work out the optimal mode of heat treatment, the studies of the concrete thermal conductivity factor in the process of its heating and strength development were carried out. The method for calculation of the basic parameters of concrete electric heating is presented. For simplification of calculations, for a wide contingent of masters, superintendents and technical personnel, the nomogram , making it possible with sufficient accuracy under the construction conditions to calculate the necessary heating parameters, was developed. The necessity of grounding the heating wire remaining in the concrete to reduce the harmful effect of magnetic radiation from various appliances and household appliances on the human body is noted.


Sign in / Sign up

Export Citation Format

Share Document