Weed Management Programs with Pyroxasulfone in Field Corn (Zea mays)

2017 ◽  
Vol 31 (4) ◽  
pp. 496-502 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond ◽  
James L. Griffin ◽  
Randall L. Landry ◽  
Brandi C. Woolam ◽  
...  

Field experiments were conducted in Louisiana and Mississippi from 2011 through 2013 to evaluate crop injury, weed control, and yield in field corn following pyroxasulfone applied PRE and POST. Pyroxasulfone PRE or POST did not injure corn at any evaluation. Barnyardgrass control was not improved with the addition of any POST treatment to pyroxasulfone alone or atrazine plus pyroxasulfone PRE; however, all POST treatments increased barnyardgrass control to at least 95% at all evaluations following atrazine PRE. All treatments that contained a PRE followed by POST application controlled browntop millet ≥90% at all evaluations. All POST treatments increased ivyleaf morningglory control to ≥92% following atrazine or pyroxasulfone alone PRE. However, control with atrazine plus pyroxasulfone PRE was similar or greater 28 d after POST than all treatments that received a POST application. In the absence of a POST treatment, pyroxasulfone or atrazine plus pyroxasulfone PRE controlled Palmer amaranth 93 to 96% at all evaluations, but atrazine alone PRE provided 84, 82, and 66% control 7, 14, and 28 d after POST, respectively. All programs that contained a PRE followed by POST herbicide treatment controlled Palmer amaranth >90% at all evaluations. Corn yield following all treatments except atrazine alone PRE and the nontreated were similar and ranged from 10990 to 12330 kg ha−1. This research demonstrated that pyroxasulfone can be a valuable tool for weed management in a corn weed management program.

2012 ◽  
Vol 26 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond

Field studies were conducted in Louisiana and Mississippi in 2009 and 2010 to evaluate PRE herbicide treatments containing isoxaflutole or a prepackaged mixture of thiencarbazone-methyl : isoxaflutole (TCM : isoxaflutole) for weed control in corn. PRE treatments included the premix of TCM : isoxaflutole alone (30 : 80 g ai ha−1) and with atrazine (1,120 g ai ha−1), isoxaflutole alone (90 g ai ha−1) and with atrazine (1,120 g ai ha−1), and the premix of atrazine plus S-metolachlor (1,820 plus 1,410 g ai ha−1). POST treatments included glufosinate (450 g ai ha−1) or glyphosate (870 g ae ha−1) applied to 30-cm corn along with a no POST treatment. All PRE treatments controlled barnyardgrass, entireleaf morningglory, rhizomatous johnsongrass, Palmer amaranth, and velvetleaf 87 to 95% 4 wk after planting (WAP) and browntop millet and hophornbeam copperleaf were controlled 86 to 95% 8 WAP. Weed control was improved 8 and 20 WAP when either POST treatment was applied. TCM : isoxaflutole plus atrazine controlled barnyardgrass, entireleaf morningglory, Palmer amaranth, and velvetleaf at least 90% 20 WAP regardless of POST treatment. TCM : isoxaflutole plus atrazine provided greater control of browntop millet (90%) than isoxaflutole alone or with atrazine and atrazine plus S-metolachlor where control was 86% 20 WAP. Pooled across POST treatments, all PRE treatments containing isoxaflutole or TCM : isoxaflutole controlled rhizomatous johnsongrass better (74 to 76%) than atrazine plus S-metolachlor (67%). Corn yield following herbicide treatments ranged from 9,280 to 11,040 kg ha−1 compared with 9,110 kg ha−1 for the nontreated. Results indicate that TCM : isoxaflutole or isoxaflutole PRE is an option for use in a corn weed management program and may prolong the use of atrazine where weed resistance may be an issue. Where rhizomatous johnsongrass is a problem, TCM : isoxaflutole or isoxaflutole PRE can provide better control than atrazine plus S-metolachlor PRE. Without PRE treatments, glufosinate or glyphosate was needed for season-long weed control.


1999 ◽  
Vol 13 (2) ◽  
pp. 367-373 ◽  
Author(s):  
Enrique Rosales-Robles ◽  
James M. Chandler ◽  
Scott A. Senseman ◽  
Eric P. Prostko

Johnsongrass, a tall, coarse, perennial grass, is the second most common and troublesome weed in field corn in Texas. Field experiments were conducted in 1996 to 1998 to evaluate an integrated johnsongrass management program in bedded and irrigated field corn. Nicosulfuron at 26.3 g ai/ha applied banded over the row to 50% of the planted area plus one cultivation resulted in johnsongrass control of aboveground and rhizome biomass and in corn yield comparable to the labeled rate (35 g ai/ha) when applied two consecutive years in the same plots. This treatment reduced cost 27% and reduced herbicide input 62% compared to nicosulfuron applied broadcast at labeled rate without cultivation. Economic benefits of this johnsongrass management program are promising for field corn producers.


2015 ◽  
Vol 29 (3) ◽  
pp. 350-358 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond ◽  
Randall L. Landry ◽  
H. Matthew Edwards

Four field experiments were conducted in Louisiana and Mississippi in 2009 and 2010 to evaluate POST herbicides treatments with tembotrione applied alone or as a prepackaged mixture with thiencarbazone for weed control in corn. Treatments included tembotrione at 92 g ai ha−1, thiencarbazone : tembotrione at 15 : 76 g ai ha−1, atrazine at 2,240 g ai ha−1, glufosinate at 450 g ai ha−1, glyphosate at 860 g ae ha−1, and coapplications of tembotrione or thiencarbazone : tembotrione with atrazine, glufosinate, or glyphosate. All treatments were applied to 26-cm corn in the V4 growth stage. Treatments containing thiencarbazone : tembotrione and those with tembotrione controlled barnyardgrass, browntop millet, entireleaf morningglory, hophornbeam copperleaf, johnsongrass, Palmer amaranth, and velvetleaf 85 to 96% and 43 to 97% 28 d after treatment and at corn harvest, respectively. Corn yield ranged from 9,200 to 10,420 kg ha−1and was greater than the nontreated control following all herbicide treatments, except atrazine alone. Results indicated that thiencarbazone : tembotrione or tembotrione POST is an option for weed management in corn, and applications of thiencarbazone : tembotrione would be strongly encouraged where rhizomatous johnsongrass is problematic.


Weed Science ◽  
1984 ◽  
Vol 32 (4) ◽  
pp. 460-467 ◽  
Author(s):  
Russell S. Moomaw ◽  
Alex R. Martin

Season-long weed control has been a goal of some producers of irrigated corn (Zea maysL.) to reduce competition, lessen weed seed production, facilitate crop harvest, improve water efficiency (particularly with furrow irrigation), and improve aesthetic properties of fields. Field experiments were conducted for 3 yr on sprinkler-irrigated corn on a loamy fine sand. Five herbicides applied at layby generally provided season-long control of grass weeds and reduced weed seed production up to 100%. Pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine] was particularly effective. Yields of irrigated corn were not increased by layby herbicide application. Use of corn rows spaced 91 cm apart and use of a shorter, early-maturing, horizontal-leaf corn cultivar resulted in greater weed growth and weed seed production than did use of 76-cm rows and a taller, full-season, upright-leaf corn cultivar. After nearly complete weed control with herbicides for 2 yr, withholding herbicide use in the third year allowed weed growth which reduced corn yield. Indications were that weed control efforts need to be continuous in irrigated corn production.


1993 ◽  
Vol 7 (4) ◽  
pp. 879-883 ◽  
Author(s):  
John R. Teasdale

Weed management treatments with various degrees of herbicide inputs were applied with or without a hairy vetch cover crop to no-tillage corn in four field experiments at Beltsville, MD. A hairy vetch living mulch in the no-treatment control or a dead mulch in the mowed treatment improved weed control during the first 6 wk of the season but weed control deteriorated in these treatments thereafter. Competition from weeds and/or uncontrolled vetch in these treatments without herbicides reduced corn yield in three of four years by an average of 46% compared with a standard PRE herbicide treatment of 0.6 kg ai/ha of paraquat plus 1.1 kg ai/ha of atrazine plus 2.2 kg ai/ha of metolachlor. Reducing atrazine and metolachlor to one-fourth the rate of the standard treatment in the absence of cover crop reduced weed control in three of four years and corn yield in two of four years compared with the standard treatment. Hairy vetch had little influence on weed control or corn yield with any herbicide treatments.


1997 ◽  
Vol 11 (4) ◽  
pp. 748-754
Author(s):  
Gail A. Wicks ◽  
Garold W. Mahnken ◽  
Gordon E. Hanson

Imidazolinone-resistant and -tolerant corn hybrids give growers a new weed control option. Field experiments were conducted in 1993 and 1994 to evaluate imazethapyr for controlling weeds in no-till corn planted into winter wheat stubble in a winter wheat–ecofallow corn rotation. Imidazolinone-tolerant (IT) and imidazolinone-resistant (IR) corn were protected genetically from injury by imazethapyr that was applied preplant, preemergence, or postemergence to ‘Pioneer Brand 3417,’ ‘Pioneer Brand 3417 IR,’ ‘ICI Seeds 8532,’ and ‘ICI Seeds 8532 IT’ hybrids. No difference in corn injury occurred between IR and IT corn. Imazethapyr applied to resistant or tolerant corn hybrids could be used to control weeds in ecofallow corn. Imazethapyr at 35 or 70 g ai/ha controlled triazine-resistant kochia better than the standard herbicide treatment of metolachlor plus cyanazine.


1995 ◽  
Vol 75 (4) ◽  
pp. 927-933 ◽  
Author(s):  
Allan S. Hamill ◽  
Jianhua Zhang

The relative effectiveness of 13 metribuzin-based weed control programs in field corn was investigated in a 3-yr study. Reduction in herbicide rates was made by modifying some commonly used metribuzin-based herbicide programs for weed control in corn. Satisfactory weed control, corn yield and economic return were obtained under each herbicide treatment, suggesting that reduction in herbicide use to reduce environmental hazard and enhance the economical benefit is achievable. Among the various herbicide programs, banded herbicide application at reduced rates plus one cultivation was observed to be the most economic weed management practice. Herbicides applied early (2–3 leaves) showed better results than those applied later (6–7 leaves) in the development stage of corn, although both times of application are within the critical period of weed control for corn. Key words: Corn (Zea mays), economic return, herbicides, weed control


1998 ◽  
Vol 12 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Ronald F. Krausz ◽  
George Kapusta

Field experiments were conducted in 1994 and 1995 to evaluate weed control in imidazolinone-resistant corn with postemergence applications of imidazolinone and sulfonylurea herbicides. Imazethapyr controlled 100% of redroot pigweed, jimsonweed, and eastern black nightshade. Control of fall panicum with imazethapyr was inconsistent, with control ranging from 42 to 85%. Imazethapyr provided less than 55% control of common lambsquarters and 43% of large crabgrass. Imazethapyr plus either atrazine, 2,4-D, or dicamba increased control of common lambsquarters compared to imazethapyr alone. Fall panicum control was > 95% with nicosufluron. CGA-152005 and MON 12000 did not control eastern black nightshade. In 1995, corn yield was greater with the hand-weeded check compared to all herbicide treatments. The greatest return over herbicide cost with imazethapyr was obtained with imazethapyr plus atrazine. Nicosulfuron plus CGA-152005 provided the greatest return over herbicide cost when averaged across years.


2011 ◽  
Vol 21 (5) ◽  
pp. 606-615 ◽  
Author(s):  
Megh Singh ◽  
Mayank Malik ◽  
Analiza H.M. Ramirez ◽  
Amit J. Jhala

Citrus (Citrus spp.) is one of the most important crops in Florida agriculture. Weed control is a major component in citrus production practices. If not controlled, weeds may compete with citrus trees for nutrients, water, and light and may also increase pest problems. Herbicides are an important component of integrated weed management program in citrus. Saflufenacil, a new herbicide registered for broadleaf weed control in citrus, can be applied alone or in a tank mix with other herbicides to improve weed control efficacy. A total of six field experiments were conducted in 2008 and 2009 to evaluate the efficacy of saflufenacil applied alone or in a tank mix with glyphosate and pendimethalin for weed control. In addition, experiments were also conducted to evaluate phytotoxicity of saflufenacil applied at different rates and time intervals in citrus. The results suggested that saflufenacil applied alone was usually effective for early season broadleaf weed control; however, weed control efficacy reduced beyond 30 days after treatment (DAT) compared with a tank mix of saflufenacil, glyphosate, and pendimethalin. For example, control of weeds was ≤70% when saflufenacil or glyphosate applied alone compared with tank mix treatments at 60 and 90 DAT. Addition of pendimethalin as a tank mix partner usually resulted in better residual weed control compared with a tank mix of saflufenacil and glyphosate, and this herbicide mixture was comparable with grower's adopted standard treatment of a tank mix of glyphosate, norflurazon, and diuron and several other tank mix treatments. Saflufenacil applied once in a season at different rates or even in sequential applications did not injure citrus trees when applied according to label directions. It is concluded that with its novel mode of action, saflufenacil tank mixed with glyphosate and pendimethalin would provide citrus growers with another chemical tool to control broadleaf and grass weeds.


1997 ◽  
Vol 11 (1) ◽  
pp. 123-131 ◽  
Author(s):  
Charles L. Mohler ◽  
James C. Frisch ◽  
Jane Mt. Pleasant

Eight cultivation programs with several equipment combinations were compared with each other and with an atrazine plus pendimethalin herbicide program with and without supplemental cultivation from 1992 to 1994. In two of the three years, cultivation with a rotary hoe or tine weeder reduced weed seedling density by 39 to 74%. Tine weeding was more effective than rotary hoeing in 1992. Rotary hoeing or tine weeding reduced corn populations by an average of 6%. Weed control by different types of inter-row cultivators varied little, except that an in-row cultivator provided better control than a rolling cultivator in two years and better control than a shovel cultivator in one year. Weeds establishing from seeds were better controlled by herbicides in all three years, but weeds establishing from roots, rhizomes, and tubers were controlled as well or better by cultivation. Weed control was sometimes better using herbicides plus cultivation than with herbicides alone, but the combination damaged the crop in two of the three years. Cost of mechanical treatments which combined inter-row cultivation with rotary hoeing or tine weeding differed from that for the herbicide treatment by less than 2%. Yields of the best mechanical treatment and the herbicide treatment were nearly equal in all years, but the best mechanical regime varied between years. Consequently, mean net return was moderately higher for the herbicide treatment.


Sign in / Sign up

Export Citation Format

Share Document