Growth, Fitness, and Overwinter Survival of a Shattercane (Sorghum bicolorssp.drummondii)×Grain Sorghum (Sorghum bicolorssp.bicolor) F2Population

Weed Science ◽  
2018 ◽  
Vol 66 (5) ◽  
pp. 634-641
Author(s):  
Jared J. Schmidt ◽  
Melinda K. Yerka ◽  
Jeffrey F. Pedersen ◽  
John L. Lindquist

AbstractAlthough sorghum [Sorghum bicolor(L.) Moench ssp.bicolor] is the fifth most important grain crop in terms of global production, no commercial hybrids carry genetically engineered (GE) traits for resistance to insect pests or herbicides due to regulatory concerns about gene flow to weedy relatives. However, non-GE herbicide resistance currently is being developed in grain sorghum and will likely transfer to related weeds. Monitoring the impact of this new nuclear technology on the evolution and invasiveness of related weeds requires a baseline understanding of the population biology of grain sorghum genes once they transfer to in situ weed populations. We previously characterized the rate of gene flow from grain sorghum to shattercane [Sorghum bicolor(L.) Moench nothosubsp.drummondii(Steud.) de Wet ex. Davidse], a conspecific weed relatively common in North America; as well as the ecological fitness of an F1population whenS. bicolornothosubsp.drummondiiwas the maternal parent. Here we report the ecological fitness of aS. bicolornothosubsp.drummondii×S. bicolorssp.bicolorF2population relative to its crop and weed parents. Parental and F2populations were grown in two Nebraska environments in 2012 and 2013. Traits evaluated included overwinter survival, field emergence, biomass production and partitioning at anthesis, total seed production, and 100-seed weight. Results indicated that F2traits were generally intermediate between the parents, but more similar toS. bicolornothosubsp.drummondiithan to grain sorghum. The one exception was overwinter survival, which was nearly 0% for both the F2and the grain sorghum parent in these northern environments. Thus, the frequency of crop alleles stably introgressed intoS. bicolornothosubsp.drummondiipopulations appears to primarily depend on overwinter survival of the F2and which selective pressures are imposed upon it by the cropping system. These data provide needed baseline information about the environmental fate of nuclear genetic technologies deployed in this important global crop.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248746
Author(s):  
Sandya R. Kesoju ◽  
Matthew Kramer ◽  
Johanne Brunet ◽  
Stephanie L. Greene ◽  
Amelia Jordan ◽  
...  

In insect-pollinated crops, gene flow is affected by numerous factors including crop characteristics, mating system, life history, pollinators, and planting management practices. Previous studies have concentrated on the impact of distance between genetically engineered (GE) and conventional fields on adventitious presence (AP) which represents the unwanted presence of a GE gene. Variables other than distance, however, may affect AP. In addition, some AP is often present in the parent seed lots used to establish conventional fields. To identify variables that influence the proportion of AP in conventional alfalfa fields, we performed variable selection regression analyses. Analyses based on a sample-level and a field-level analysis gave similar, though not identical results. For the sample-level model, distance from the GE field explained 66% of the variance in AP, confirming its importance in affecting AP. The area of GE fields within the pollinator foraging range explained an additional 30% of the variation in AP in the model. The density of alfalfa leafcutting bee domiciles influenced AP in both models. To minimize AP in conventional alfalfa seed fields, management practices should focus on optimizing isolation distances while also considering the size of the GE pollen pool within the pollinator foraging range, and the foraging behavior of pollinators.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
P. G. Tillman ◽  
T. E. Cottrell

Lady beetles (Coleoptera: Coccinellidae) prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton.Scymnusspp.,Coccinella septempunctata(L.),Hippodamia convergensGuérin-Méneville,Harmonia axyridis(Pallas),Coleomegilla maculata(De Geer),Cycloneda munda(Say), andOlla v-nigrum(Mulsant) were found in sorghum over both years. Lady beetle compositions in sorghum and cotton and in yellow pyramidal traps were similar. For both years, density of lady beetles generally was higher on cotton with sorghum than on control cotton. Our results indicate that sorghum was a source of lady beetles in cotton, and thus incorporation of a sorghum habitat in farmscapes with cotton has great potential to enhance biocontrol of insect pests in cotton.


2008 ◽  
Vol 15 (1) ◽  
pp. 61 ◽  
Author(s):  
E. VEROMANN ◽  
T. TARANG ◽  
R. KEVVÄI

To investigate the impact of different cropping systems, the pests, their hymenopteran parasitoids and predatory ground beetles present in two spring rape crops in Estonia, in 2003, were compared. One crop was grown under a standard (STN) cropping system and the other under a minimised (MIN) system. The STN system plants had more flowers than those in the MIN system, and these attracted significantly more Meligethes aeneus, the only abundant and real pest in Estonia. Meligethes aeneus had two population peaks: the first during opening of the first flowers and the second, the new generation, during ripening of the pods. The number of new generation M. aeneus was almost four times greater in the STN than in the MIN crop. More carabids were caught in the MIN than in STN crop. The maximum abundance of carabids occurred two weeks before that of the new generation of M. aeneus, at the time when M. aeneus larvae were dropping to the soil for pupation and hence were vulnerable to predation by carabids.


Crop Science ◽  
1969 ◽  
Vol 9 (3) ◽  
pp. 299-302 ◽  
Author(s):  
George H. L. Liang ◽  
C. B. Overley ◽  
A. J. Casady

2005 ◽  
Vol 34 (3) ◽  
pp. 181-187 ◽  
Author(s):  
Alan Cork ◽  
Malcolm J. Iles ◽  
Nazira Q. Kamal ◽  
J.C. Saha Choudhury ◽  
M. Mahbub Rahman ◽  
...  

Bangladesh is essentially self-sufficient in rice as a result of the successful adoption of new high-yielding varieties and irrigated summer production over traditional deep-water cultivation practices. The sustainability of the cropping system depends on farmers adopting integrated pest management (IPM) practices in preference to relying solely on insecticides for pest and disease control. Yet insecticide consumption in rice is increasing, in common with other crop-production systems in Bangladesh. It is probably only the poor economic returns from rice cultivation that prevent more widespread use of pesticides. Enlightened agrochemical companies such as Syngenta Bangladesh Limited have recognized that insecticide use in rice should be discouraged, and promote IPM options through their farmer field school (FFS) programme. This paper describes the results of a collaborative project to assist Syngenta to develop and incorporate mass trapping with sex pheromones into their FFS programme as an environmentally benign method of controlling the predominant insect pests of rice, stem borers.


Sign in / Sign up

Export Citation Format

Share Document