Multichannel peristaltic pump with a pneumatic nebulizer for atomic absorption or emission spectrometry

1981 ◽  
Vol 53 (4) ◽  
pp. 747-748 ◽  
Author(s):  
L. R. Layman ◽  
J. G. Crock ◽  
F. E. Lichte
1996 ◽  
Vol 68 (12) ◽  
pp. 231-256 ◽  
Author(s):  
Kenneth W. Jackson ◽  
Guoru Chen

2018 ◽  
Vol 114 (1) ◽  
pp. 137-150
Author(s):  
Michał Halagarda ◽  
Joanna Ptasińska-Marcinkiewicz ◽  
Kamil Fijorek

Milk is one of the most important foodstuffs and raw materials in the food industry. As the first complete food available to infant mammals, it is bioactive and it contains all the indispensable nutrients. Organic farming is deemed to produce high quality food under sustainable conditions and, at the same time, to protect the natural environment within the farm. However, the most recent food and nutrition research does not confirm the extensive health benefits related to the consumption of organic products. The objective of the research study was to evaluate and compare the quality of commercial organic and conventional cow’s milk as regards the contents of some selected mineral compounds. The research was conducted on the organic and conventional cow’s milk available on the market in Southern Poland. The milk samples were analysed for the concentration of selected minerals contained therein, including some selected toxic metals; the analyses were performed with the use of flame atomic absorption spectrometry, atomic emission spectrometry, and graphite furnace atomic absorption spectrometry. The results of the research show that, in terms of the contents of micro- and macroelements, the organic and conventional milk do not differ significantly. The differences were found only between the amounts of sodium and manganese. The organic milk contained, on average, a statistically significantly smaller amount of those elements. Moreover, the presence of lead was detected in one type of the organic milk, although its amount determined (5.24 mg/l) was within the acceptable limits. Cadmium (amounting to 0.12 and 0.15 μg/l) was found in the two types of milk derived from the same company and in one type of organic milk; however, its concentration in the latter milk type was at a relatively low level (0.04 μg/l).


2019 ◽  
Vol 6 (14) ◽  
pp. 803-817
Author(s):  
Jefferson Luiz Antunes Santos ◽  
Jader Galba Busato ◽  
Rodrigo de Almeida Heringer ◽  
Juscimar da Silva ◽  
Leonardo Barros Dobbss

The importance of arsenic (As) quantification in environmental compartments is due to its risks to ecosystems and public health. There are reports of high concentrations of this metalloid in Brazil and technological differences between states are observed. The objective of this work was to present and discuss current scenarios of accreditation and compare the limit of quantification (LOQ) of As by analytical technique in Brazil. Data from accredited laboratories were collected on Inmetro website and in state metrological networks and then grouped and analyzed by state, matrix and analytical technique. There are large discrepancies between the number of laboratories per state and a good correlation with gross domestic product (GDP). Almost all laboratories have a LOQ less than the environmental limits. The observed list of techniques sorted from lowest to highest LOQ values is: for liquid samples ICP MS (inductively coupled plasma mass spectrometry), ET AAS (electrothermal atomic absorption spectrometry), HG AAS (hydride generation combined with atomic absorption spectrometry) or HG ICP OES (hydride generation combined with inductively coupled plasma optical emission spectrometry) and UV VIS (visible ultraviolet spectroscopy); for solids samples HG ICP OES, ICP MS, HG AAS, ET AAS and FAAS (flame atomic absorption spectrometry); and for bioindicators ICP MS, HG ICP OES. Analysis of As species is accredited in only one laboratory, but does not include all species.


2004 ◽  
Vol 20 (6-10) ◽  
pp. 103-108 ◽  
Author(s):  
Chisato Koizumi ◽  
Kan Usuda ◽  
Satsuki Hayashi ◽  
Tomotaro Dote ◽  
Koichi Kono

Nickel is a rare earth metal and is widely used in modern industry. Its overexposure in human beings can provoke significant effects including lung, cardiovascular and kidney diseases. As an index of occupational exposure, urine is widely used for the monitoring of nickel concentration because it is a minimally invasive method. Recent studies have used atomic absorption spectrometry to measure nickel concentration. In this study, we introduced novel inductively coupled plasma argon emission spectrometry (ICPAES) which enables us to measure multiple elements simultaneously with smaller volume and with lower detection limits compared to conventional atomic absorption emission spectrometry, and we established the new measuring method by determining the appropriate wavelengths for nickel concentration. Furthermore, using the established new measuring method, we investigated the correlation between a single oral administration of nickel and urine elimination in rats. As a result, different concentrations of nickel standard solutions were measured by ICPAES, and among five specific wavelengths of nickel, 221.647 and 231.604 nm were chosen because they had the highest inclines of both signal to background ratio and emission intensity in simple linear regression analysis. Next, by using healthy human urine samples that had not been exposed to nickel, 231.604 nm was determined to be the most appropriate wavelength because it did not present abnormal intensity due to obstacle wavelength. Male Wistar rats received an oral administration of nickel ranging from 0.025 to 250 mg/kg, which is equivalent to 0.0015-15% of LD50, and during the following 24 h, urine samples were collected and the nickel concentration was measured by ICPAES. With a single oral administration of nickel, there was an increase in urine nickel concentration in a dose-dependent manner and the appropriate equation was developed. Acute renal failure was not observed in this dosage of oral nickel administration by analysing NAG, b2-microglobulin, urine albumin and urine protein. It was concluded that the obtained nickel reference values using ICPAES would be useful for the early diagnosis of nickel intoxication and in the assessment of the exposure to nickel.


Sign in / Sign up

Export Citation Format

Share Document