Determination of pore size distributions of liquid chromatographic column packings by gel permeation chromatography

1984 ◽  
Vol 56 (6) ◽  
pp. 950-957 ◽  
Author(s):  
F. Vincent. Warren ◽  
Brian A. Bidlingmeyer
1975 ◽  
Vol 58 (5) ◽  
pp. 978-982
Author(s):  
Norbert V Fehringer

Abstract A method for the determination of polybrominated biphenyls (PBBs) in dairy products is described. Fat is extracted from the products by the official AOAC method. The PBB residues are separated from the fatty material by gel permeation chromatography prior to gas-liquid chromatographic (GLC) quantitation. An additional cleanup using petroleum ether elution through a miniature Florisil column is necessary for thin layer chromatographic (TLC) confirmation. Recoveries of PBBs from samples fortified at levels from 0.1 to 0.5 ppm ranged from 94 to 104% with an average of 99%. GLC sensitivity permits the estimation of PBB residue levels as low as 0.007 ppm. Routine TLC confirmation is limited by sensitivity to ≥0.2 ppm.


1989 ◽  
Vol 72 (4) ◽  
pp. 586-592 ◽  
Author(s):  
Sher M Ali

Abstract A liquid chromatographic (LC) method using a 2-step purification technique for the simultaneous determination of 10 carbamates in bovine, swine, and duck livers has been developed. Carbamates are extracted from liver samples with methylene chloride. After evaporation, the residues from the extract are dissolved in methylene chloride- cyclohexane (1 + 1) and cleaned up by gel permeation chromatography. The eluate containing carbamate residues is evaporated to dryness, reconstituted in methylene chloride, further purified by passing it through an aminopropyl Bond Elut extraction cartridge, and analyzed by liquid chromatography using post-column derivatization with orthophthalaldehyde and fluorescence detection. Excitation and emission are set at 340 and 418 nm, respectively. Liver samples for beef, pork, and duck were fortified with 5, 10, and 20 ppb of mixed carbamate standards. The average of 10 recoveries of 10 carbamates at all 3 levels of fortification was greater than 80% with coefficients of variation less than 17%.


2002 ◽  
Vol 206 (1-3) ◽  
pp. 393-400 ◽  
Author(s):  
R.H López ◽  
A.M Vidales ◽  
G Zgrablich ◽  
F Rojas ◽  
I Kornhauser ◽  
...  

2003 ◽  
Vol 766 ◽  
Author(s):  
Barry J. Bauer ◽  
Ronald C. Hedden ◽  
Hae-Jeong Lee ◽  
Christopher L. Soles ◽  
Da-Wei Liu

AbstractSmall angle neutron and x-ray scattering (SANS, SAXS) are powerful tools in determination of the pore size and content of nano-porous materials with low dielectric constants (low-k) that are being developed as interlevel dielectrics. Several models have been previously applied to fit the scattering data in order to extract information on the average pore and/or matrix size. A new method has been developed to provide information on the size distributions of the pore and matrix phases based on the “chord length distribution” introduced by Tchoubar and Mering. Examples are given of scattering from samples that have size distributions that are narrower and broader than the random distribution typical of scattering described by Debye, Anderson, and Brumberger. An example of fitting SANS data to a phase size distribution is given.


2000 ◽  
Vol 37 (6) ◽  
pp. 1184-1194 ◽  
Author(s):  
Y Watabe ◽  
S Leroueil ◽  
J -P Le Bihan

The paper examines the hydraulic conductivity of a nonplastic till from northern Quebec. It is shown that the hydraulic conductivity is strongly influenced by the compaction degree of saturation, and the variation of hydraulic conductivity with void ratio is influenced by compaction conditions. Determination of pore-size distributions and microphotographs provide evidence that changes in hydraulic conductivity are related to the fabric of the compacted specimens and macroporosity developing when the soil is compacted at degrees of saturation less than that at the optimum.Key words: till, hydraulic conductivity, microfabric.


Langmuir ◽  
1994 ◽  
Vol 10 (9) ◽  
pp. 3230-3243 ◽  
Author(s):  
S. K. Bhatia ◽  
H. K. Shethna

Sign in / Sign up

Export Citation Format

Share Document