Determination of Aqueous Solubility and Surface Adsorption of Polycyclic Aromatic Hydrocarbons by Laser Multiphoton Ionization

1998 ◽  
Vol 70 (13) ◽  
pp. 2685-2692 ◽  
Author(s):  
Vladimir V. Gridin ◽  
Iris Litani-Barzilai ◽  
Michal Kadosh ◽  
Israel Schechter
2018 ◽  
Vol 8 (9) ◽  
pp. 1617 ◽  
Author(s):  
Christian Gehm ◽  
Thorsten Streibel ◽  
Johannes Passig ◽  
Ralf Zimmermann

Resonance enhanced multiphoton ionization (REMPI) is a powerful method for the sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in gaseous mixtures via mass spectrometry (MS). In REMPI, ions are produced by the absorption of at least two photons including defined electronic intermediate states. As a result—unlike other laser-based ionization techniques—spectroscopic selectivity is involved into the ionization process. Nevertheless, these wavelength-dependent ionization rates impede the quantification using REMPI. For this purpose, relative photoionization cross sections (relPICS) give an easy-to-use approach to quantify REMPI-MS measurements. Hereby, the ionization behavior of a single compound was compared to that of a reference substance of a given concentration. In this study, relPICS of selected single-core aromatics and PAHs at wavelengths of 266 nm and 248 nm were determined using two different time-of-flight mass spectrometric systems (TOFMS). For PAHs, relPICS were obtained which showed a strong dependence on the applied laser intensity. In contrast, for single-core aromatics, constant values of relPICS were determined. Deviations of relPICS between both TOFMS systems were found for small aromatics (e.g., benzene), which can be assigned to the differences in UV generation in the particular system. However, the relPICS of this study were found to be in good agreement with previous results and can be used for system-independent quantification.


Sign in / Sign up

Export Citation Format

Share Document