scholarly journals Spectroelectrochemical Evidence of Interconnected Charge and Ion Transfer in Ultrathin Membranes Modulated by a Redox Conducting Polymer

2020 ◽  
Vol 92 (20) ◽  
pp. 14085-14093
Author(s):  
Yujie Liu ◽  
Alexander Wiorek ◽  
Gaston A. Crespo ◽  
Maria Cuartero
2012 ◽  
Vol 90 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Hakim Mehenni

In this study, a simple and direct biosensor was proposed, which was based on biotin immobilized onto a conducting polymer-coated electrode, for the determination of avidin, a highly stable glycoprotein found in egg whites. Biotin was immobilized onto the electrode by covalent coupling to the primary amine group on poly-3′-(2-methoxy-5-amino-β-styryl)-(2,2′:5′,2″-terthiophene) (PMAST), and the biotin–avidin interaction was monitored by square-wave voltammetry. Incubation of the PMAST/biotin-modified coated electrode with avidin in a phosphate-buffered saline solution caused a significant change to its square-wave voltammogram, which was explained by the binding of avidin by biotin, and resulted in restricted ion transfer to and from the conducting polymer. This change was then utilized to determine avidin. Importantly, we found a linear relationship for the avidin sensor in the range of 4 × 10−14 to 3 × 10−4 mol/L, and the detection limit was determined to be approximately 10−14 mol/L.


2014 ◽  
Vol 30 (3) ◽  
pp. 351-357 ◽  
Author(s):  
Yumi YOSHIDA ◽  
Junya UCHIDA ◽  
Shotaro NAKAMURA ◽  
Satoshi YAMAGUCHI ◽  
Kohji MAEDA

2012 ◽  
Vol 65 (4) ◽  
pp. 395 ◽  
Author(s):  
Hakim Mehenni ◽  
Lê H. Dao

In this study, a simple and direct biodetector was proposed, which was based on biotin immobilized onto a conducting polymer-coated electrode, for the detection of avidin, a highly stable glycoprotein found in egg-whites. Biotin was immobilized onto the electrode by covalent coupling to the primary amine group on the poly 3′-(3-chloro-4-amino-β-styryl)-(2,2′ : 5′,2″-terthiophene) (PCAST), and the biotin–avidin interaction was monitored by cyclic voltammetry. Incubation of the PCAST/biotin-modified-coated electrode with avidin in a phosphate buffered saline solution caused a significant change to its cyclic voltammogram, which was explained by the binding of avidin by biotin, and resulted in restricted ion transfer to and from the conducting polymer. This change was then utilized to detect avidin at 4 × 10–6 mol L–1.


2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


Sign in / Sign up

Export Citation Format

Share Document