oxidation ratio
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaoye Wu ◽  
Duanyang Liu ◽  
Tianliang Zhao ◽  
Yan Su ◽  
Bin Zhou

In order to investigate the chemical composition distributions and pollution characteristics of Total water-soluble inorganic ions (TWSII) in the rain period (Meiyu) in the East Asian summer monsoon season, including the impact of Meiyu on air pollution in the Yangtze River Delta, East China, the gaseous pollutant concentrations, the 9 sizes segregated particles, and water-soluble inorganic ions of aerosols were measured on the north shore of Taihu Lake from June 4 to July 5, 2016. Results show that the mass concentrations of atmospheric particulate matters (PM2.5 and PM10) and main gaseous pollutants (SO2, NO2, CO, and O3) decrease during the Meiyu period, with the largest decline in PM10 and the smallest in CO. TWSII in atmospheric particles are mainly concentrated in fine particles during the Meiyu period. The values of ρ (TWSII) for PM1.1, PM1.1–2.1, and PM2.1–10 before the Meiyu onset are generally greater than those during the Meiyu period. During the first pollution process, the ρ(TWSII) for PM1.1 and PM1.1–2.1 first increase to the peak values, and then decrease during the moderate rainfall period, when the ρ(TWSII) in PM2.1–10 increase to its maximum before the Meiyu onset. The mass concentrations for anions, cations, and total ions at different particle-size sections all exhibit bimodal distributions before and after the Meiyu onset. The mass concentration peaks at a particle size of 1.1–2.1 μm for fine particles, while at 5.8–9.0 μm (before the Meiyu onset) and 9.0–10.0 μm (during the Meiyu period) for coarse particles, respectively. The peak particle size for mass concentration of coarse particles moves toward larger sizes during the Meiyu period. The mass concentrations of SO42− at different particle-size sections show a bimodal distribution before the Meiyu onset and a multi-modal distribution during the Meiyu period. The mass concentrations of NO3− at different particle-size sections show a bimodal distribution before the Meiyu onset and a unimodal distribution during the Meiyu period. The mass concentrations of NH4+ at different particle-size sections present a bimodal distribution before and after the Meiyu onset, with the particle-size for peak concentrations distributing in 1.1–2.1 and 5.8–9.0 μm before the Meiyu onset, and 9.0–10.0 μm during the Meiyu period. The mean value of nitrogen oxidation ratio (NOR) is higher before the Meiyu onset than after, indicating that the secondary conversion of NO2 before the Meiyu onset is enhanced. The sulfur oxidation ratio (SOR) values are greater than NOR values, but the concentrations of NO2 in the same period during the Meiyu period are higher than those of SO2, which indicates that the secondary conversion of SO2 during the Meiyu period on the north bank of Taihu Lake is stronger than that of NO2. During the whole observation, the contribution of stationary sources mainly contributed to the atmospheric particulate matters during the Meiyu period. The contributions of vehicle exhaust and coal combustion to fine particles are more obviously affected by the changes in meteorological conditions during the Meiyu period, and the vehicle emissions contribute more to PM1.1–2.1 than to PM1.1.


2021 ◽  
Vol 21 (17) ◽  
pp. 13269-13286
Author(s):  
Yongchun Liu ◽  
Zemin Feng ◽  
Feixue Zheng ◽  
Xiaolei Bao ◽  
Pengfei Liu ◽  
...  

Abstract. Although the anthropogenic emissions of SO2 have decreased significantly in China, the decrease in SO42- in PM2.5 is much smaller than that of SO2. This implies an enhanced formation rate of SO42- in the ambient air, and the mechanism is still under debate. This work investigated the formation mechanism of particulate sulfate based on statistical analysis of long-term observations in Shijiazhuang and Beijing supported with flow tube experiments. Our main finding was that the sulfur oxidation ratio (SOR) was exponentially correlated with ambient RH in Shijiazhuang (SOR = 0.15+0.0032×exp⁡(RH/16.2)) and Beijing (SOR = -0.045+0.12×exp⁡(RH/37.8)). In Shijiazhuang, the SOR is linearly correlated with the ratio of aerosol water content (AWC) in PM2.5 (SOR = 0.15+0.40×AWC/PM2.5). Our results suggest that uptake of SO2 instead of oxidation of S(IV) in the particle phase is the rate-determining step for sulfate formation. NH4NO3 plays an important role in the AWC and the change of particle state, which is a crucial factor determining the uptake kinetics of SO2 and the enhanced SOR during haze days. Our results show that NH3 significantly promoted the uptake of SO2 and subsequently the SOR, while NO2 had little influence on SO2 uptake and SOR in the presence of NH3.


2021 ◽  
Vol 9 ◽  
Author(s):  
Haoran Zhang ◽  
Keqin Tang ◽  
Weihang Feng ◽  
Xintian Yan ◽  
Hong Liao ◽  
...  

This study analyzed the effectiveness of temporary emission control measures on air quality of Nanjing, China during the Jiangsu Development Summit (JDS). We employed a regional chemistry model WRF-Chem to simulate air pollutants in Nanjing and compared the results to surface observations and satellite retrievals. During the JDS, air pollutant emissions from industry and transportation sectors largely decreased by 50–67% due to the short-term emission control measures such as reducing coal combustions, shutting down factories, and partially limiting traffic. Benefiting from the emission control, the simulated concentrations of PM2.5, NO2, SO2, CO and VOCs in Nanjing decreased by 17%, 20%, 20%, 19%, and 15% respectively, consistent with the surface and satellite observations. However, both the observed and simulated O3 increased by 3–48% during the JDS, which was mainly due to the remarkable NOx emission reduction (26%) in the downtown of Nanjing where the O3 production regime was mainly VOC-controlled. In addition, the atmospheric oxidation capacity and further the sulfur oxidation ratio, were facilitated by the elevated O3, which led to variable mitigation efficiencies of different secondary PM2.5 compositions. Our study offers an opportunity for understanding the coordinated control of PM2.5 and O3 in typical city clusters, and can provide implications for future mitigation actions.


2021 ◽  
Author(s):  
Saehee Lim ◽  
Meehye Lee ◽  
Joel Savarino ◽  
Paolo Laj

Abstract. PM2.5 haze pollution driven by secondary inorganic NO3− has been a great concern in East Asia. It is, therefore, imperative to identify its sources and oxidation processes, for which nitrogen and oxygen stable isotopes are powerful tracers. Here, we determined the δ15N (NO3−) and Δ17O (NO3−) of PM2.5 in Seoul from 2018 to 2019, and estimated quantitatively the relative contribution of oxidation pathways for particulate NO3− and major NOx emission sources. In the range of PM2.5 mass concentration from 7.5 g m−3 (summer) to 139.0 g m−3 (winter), the mean δ15N was −0.7 ± 3.3 ‰ and 3.8 ± 3.7 ‰, and the mean Δ17O was 23.2 ± 2.2 ‰ and 27.7 ± 2.2 ‰ in the summer and winter, respectively. While OH oxidation was the dominant pathway for NO3− during the summer (87 %), nighttime formation via N2O5 and NO3 was more important (38 %) during the winter, when aerosol liquid water content (AWLC) and nitrogen oxidation ratio (NOR) were higher. Interestingly, the highest Δ17O was coupled with the lowest δ 15N and highest NOR in record-breaking winter PM2.5 episodes, revealing the critical role of photochemical oxidation process in severe winter haze development. For NOx sources, vehicle emissions were confirmed as a main contributor, followed by biomass combustion from various activities. The contribution from biogenic soil and coal combustion was slightly increased in summer and winter, respectively. Our results built on multiple-isotope approach provide the first explicit evidence for NO3− formation processes and major NOx emission sources in Seoul megacity and suggest an effective mitigation measure to improve PM2.5 pollution.


2021 ◽  
pp. 9-12

Aim: Exercise has great influence on increasing metabolic system functions. The work load corresponded to anaerobic threshold provide optimal aerobic strain for metabolic activity in exercising muscle. In the present study we intended to evaluate body substrate oxidation ratio during constant load exercise test at the intensity of anaerobic threshold in healthy young male subjects. Material and Method: Total of 15 male performed an incremental ramp exercise test to estimate anaerobic threshold. Standard V-slope method used to estimate anaerobic threshold. Then each subject performed a constant load exercise test for a 30 min period with a work load corresponded to their anaerobic threshold. Respiratory quotient (RQ) used to evaluate substrate oxidations during exercise. Anova test used to evaluate significance of data obtained every 5 minutes of constant load exercise. Results: The subjects’ anaerobic threshold occurred at approximately 63% of their maximal exercise capacity. RQ varied markedly among the subjects but as a mean value, but it systematically decreased with increasing exercise time. Body mass index and exercise time has great importance on fat and carbohydrate oxidation ratio. Conclusion: Exercise intensity at the anaerobic threshold provides meaningfully fat oxidation and could be acceptable in subjects with high body fat mass.


2021 ◽  
Author(s):  
Jiani Tan ◽  
Joshua Fu ◽  
Gregory Carmichael ◽  
Hang Su ◽  
Yafang Cheng

<p>This study aims at comparing the gas-to-particle conversion mechanisms adopted by regional chemical transport models (CTMs). We use the results from twelve regional CTMs from the third phase of the Model Inter-Comparison Study for Asia (MICS-Asia III). The simulations are conducted over East Asia for the whole year of 2010. The models used are WRF-CMAQ (version 4.7.1 and v5.0.2), WRF-Chem (v3.6.1 and v3.7.1), GEOS-Chem, NHM-Chem, NAQPMS and NU-WRF. Measurements from 54 EANET sites, 86 sites of the Air Pollution Indices (API) and 35 local sites, remote sensing products from AERONET and satellite data from MODIS are used to evaluate model performance on PM<sub>10</sub>, PM<sub>2.5</sub> and its components and aerosol optical depth (AOD). To investigate the inter-model differences in secondary aerosol formation, we compare the Sulfur Oxidation Ratio (SOR) and Nitrogen Oxidation Ratio (NOR) values by different models with observations at the EANET sites. The preliminary results show that the inter-model differences in the oxidation ratio (50%) are almost of the same magnitude as those in simulating the concentrations of particles. The results suggest large uncertainties in the gas-particle conversion process in modelling secondary aerosol formation.</p>


2021 ◽  
Vol 21 (2) ◽  
pp. 915-926
Author(s):  
Yuying Wang ◽  
Zhanqing Li ◽  
Qiuyan Wang ◽  
Xiaoai Jin ◽  
Peng Yan ◽  
...  

Abstract. A comprehensive field experiment measuring aerosol chemical and physical properties at a suburban site in Beijing around the 2019 Spring Festival was carried out to investigate the impact of reduced anthropogenic emissions on aerosol formation. Sharply reduced sulfur dioxide (SO2) and nitrogen dioxide (NO2) concentrations during the festival holiday resulted in an unexpected increase in the surface ozone (O3) concentration caused by the strong O3-titration phenomenon. Simultaneously, the reduced anthropogenic emissions resulted in massive decreases in particle number concentration at all sizes and the mass concentrations of organics and black carbon. However, the mass concentrations of inorganics (especially sulfate) decreased weakly. Detailed analyses of the sulfur oxidation ratio and the nitrogen oxidation ratio suggest that sulfate formation during the holiday could be promoted by enhanced nocturnal aqueous-phase chemical reactions between SO2 and O3 under moderate relative humidity (RH) conditions (40 % < RH < 80 %). Daytime photochemical reactions in winter in Beijing mainly controlled nitrate formation, which was enhanced a little during the holiday. A regional analysis of air pollution patterns shows that the enhanced formation of secondary aerosols occurred throughout the entire Beijing–Tianjin–Hebei (BTH) region during the holiday, partly offsetting the decrease in particle matter with an aerodynamic diameter less than 2.5 µm. Our results highlight the necessary control of O3 formation to reduce secondary pollution in winter under current emission conditions.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1033
Author(s):  
Karl Kerns ◽  
Jennifer Jankovitz ◽  
Julie Robinson ◽  
Amanda Minton ◽  
Chris Kuster ◽  
...  

The length of sperm tail midpiece, occupied by the mitochondrial sheath (MS), has been correlated with reproductive traits of mice, fish, and birds; however, it is not known whether such a correlation exists in higher order species such as domestic pigs. As the mitochondria provide for sperm motility and generate the fertility-affecting reactive oxygen species (ROS), we hypothesized that MS length correlates with boar semen parameters and artificial insemination (AI) fertility. Sperm samples collected from 57 boars and used for single sire AI were labeled with ProteoStat Aggresome probe (AGG; Enzo Life Sciences) for MS imaging by epifluorescence microscopy and image-based flow cytometry (IBFC). The mean boar MS length was 7.26 ± 0.2 µm, ranging from 6.94 ± 0.18 µm to 7.65 ± 0.31 µm. The absolute longest MS measured was 9.19 µm and the shortest was 5.83 µm. Boars in the high tertile of MS length had significantly higher conception rate (CR; p = 0.05) and sperm parameters. Boars within the high tertile of average number piglets born per litter had significantly shorter MS and more varied MS length than boars in the low tertile (p = 0.04). MS length data correlated with conventional sperm parameters including percent viable and intact acrosomes (p = 0.03), basal:induced oxidation ratio (measure of intracellular ROS levels; p = 0.02) and Comp DNA (chromatin integrity; p = 0.06) along with many flow cytometric AGG parameters in IBFC. Sperm head AGG intensity median absolute deviation had a negative correlation with total born (r = −0.423 p = 0.004). These data reveal a complex relationship between sperm MS length and aggresome abundance to sperm parameters and boar reproductive success in AI service.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 953 ◽  
Author(s):  
Xiaofeng Hu ◽  
Yongzheng Yin ◽  
Lian Duan ◽  
Hong Wang ◽  
Weijun Song ◽  
...  

PM2.5 was sampled from January 2017 to May 2018 at an urban, suburban, industrial, and rural sites in Xining. The annual mean of PM2.5 was highest at the urban site and lowest at the rural site, with an average of 51.5 ± 48.9 and 26.4 ± 17.8 μg·m−3, respectively. The average PM2.5 concentration of the industrial and suburban sites was 42.8 ± 27.4 and 37.2 ± 23.7 μg·m−3, respectively. All sites except for the rural had concentrations above the ambient air quality standards of China (GB3095-2012). The highest concentration of PM2.5 at all sites was observed in winter, followed by spring, autumn, and summer. The concentration of major constituents showed statistically significant seasonal and spatial variation. The highest concentrations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and water-soluble inorganic ions (WSIIs) were found at the urban site in winter. The average concentration of F− was higher than that in many studies, especially at the industrial site where the annual average concentration of F− was 1.5 ± 1.7 μg·m−3. The range of sulfur oxidation ratio (SOR) was 0.1–0.18 and nitrogen oxidation ratio (NOR) was 0.02–0.1 in Xining. The higher SO42−/NO3− indicates that coal combustion has greater impact than vehicle emissions. The results of the potential source contribution function (PSCF) suggest that air mass from middle- and large-scale transport from the western areas of Xining have contributed to the higher level of PM2.5. On the basis of the positive matrix factorization (PMF) model, it was found that aerosols from salt lakes and dust were the main sources of PM2.5 in Xining, accounting for 26.3% of aerosol total mass. During the sandstorms, the concentration of PM2.5 increased sharply, and the concentrations of Na+, Ca2+ and Mg2+ were 1.13–2.70, 1.68–4.41, and 1.15–5.12 times higher, respectively, than annual average concentration, implying that aerosols were mainly from dust and the largest saltwater lake, Qinghai Lake, and many other salt lakes in the province of Qinghai. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was utilized to study the surface components of PM2.5 and F− was found to be increasingly distributed from the surface to inside the particles. We determined that the extremely high PM2.5 concentration appears to be due to an episode of heavy pollution resulting from the combination of sandstorms and the burning of fireworks.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 847
Author(s):  
Hao Xiao ◽  
Hua-Yun Xiao ◽  
Zhong-Yi Zhang ◽  
Neng-Jian Zheng ◽  
Qin-kai Li ◽  
...  

Sulfate, nitrate and ammonium (SNA) are the dominant components of water-soluble ions (WSIs) in PM2.5, which are of great significance for understanding the sources and transformation mechanisms of PM2.5. In this study, daily PM2.5 samples were collected from September 2017 to August 2018 within the Guiyang urban area and the concentrations of the major WSIs in the PM2.5 samples were characterized. The results showed that the average concentration of SNA (SO42−, NO3−, NH4+) was 15.01 ± 9.35 μg m−3, accounting for 81.05% (48.71–93.76%) of the total WSIs and 45.33% (14.25–82.43%) of the PM2.5 and their possible chemical composition in PM2.5 was (NH4)2SO4 and NH4NO3. The highest SOR (sulfur oxidation ratio) was found in summer, which was mainly due to the higher temperature and O3 concentrations, while the lowest NOR (nitrogen oxidation ratio) found in summer may ascribe to the volatilization of nitrates being accelerated at higher temperature. Furthermore, the nitrate formation was more obvious in NH4+-rich environments so reducing NH3 emissions could effectively control the formation of nitrate. The results of the trajectory cluster analysis suggested that air pollutants can be easily enriched over short air mass trajectories from local emission sources, affecting the chemical composition of PM2.5.


Sign in / Sign up

Export Citation Format

Share Document