Highly Sensitive Colorimetric/Surface-Enhanced Raman Spectroscopy Immunoassay Relying on a Metallic Core–Shell Au/Au Nanostar with Clenbuterol as a Target Analyte

Author(s):  
Lihong Su ◽  
Huilan Hu ◽  
Yanli Tian ◽  
Conghui Jia ◽  
Lulu Wang ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1554 ◽  
Author(s):  
Yaqi Huang ◽  
Dajie Lin ◽  
Mengting Li ◽  
Dewu Yin ◽  
Shun Wang ◽  
...  

A highly sensitive immunoassay of biomarkers has been achieved using 4-mercaptobenzoic acid-labeled Ag@Au core–shell porous nanocage tags and α-fetoprotein immuno-sensing chips. The Ag@Au porous nanocages were uniquely synthesized by using an Ag core as a self-sacrificial template and reducing agent, where the slow reaction process led to the formation of a porous Au layer. The size of the remaining Ag core and surface roughness of the Au shell were controlled by adjusting the chloroauric acid concentration. The porous cage exhibited excellent surface-enhanced Raman spectroscopy (SERS) activity, presumably due to a synergetic interaction between newly generated hot spots in the rough Au shell and the retained SERS activity of the Ag core. Using α-fetoprotein as a model analyte for immunoassay, the SERS signal had a wide linear range of 0.20 ng mL−1 to 500.0 ng mL−1 with a detection limit of 0.12 ng mL−1. Without the need of further signal amplification, the as-prepared Ag@Au bimetallic nanocages can be directly used for highly sensitive SERS assays of other biomarkers in biomedical research, diagnostics, etc.


The Analyst ◽  
2021 ◽  
Author(s):  
Araz Norouz Dizaji ◽  
Nihal Simsek Ozek ◽  
Ferhunde Aysin ◽  
Ayfer Calis ◽  
Asli Yilmaz ◽  
...  

This study reports the development of a highly sensitive antibiotic-based discrimination and sensor platform for the detection of gram-positive bacteria through surface-enhanced Raman spectroscopy (SERS). Herein, the combination of gold...


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 688 ◽  
Author(s):  
Asli Yilmaz ◽  
Mehmet Yilmaz

Despite numerous attempts to fabricate the core–shell nanoparticles, novel, simple, and low-cost approaches are still required to produce these efficient nanosystems. In this study, we propose the synthesis of bimetallic core–shell nanoparticles of gold (AuNP) and silver (AgNP) nanostructures via a bioinspired polydopamine (PDOP) layer and their employment as a surface-enhanced Raman spectroscopy (SERS) platform. Herein, the PDOP layer was used as an interface between nanostructures as well as stabilizing and reducing agents for the deposition of silver ions onto the AuNPs. UV-vis absorption spectra and electron microscope images confirmed the deposition of the silver ions and the formation of core–shell nanoparticles. SERS activity tests indicated that both the PDOP thickness and silver deposition time are the dominant parameters that determine the SERS performances of the proposed core–shell system. In comparison to bare AuNPs, more than three times higher SERS signal intensity was obtained with an enhancement factor of 3.5 × 105.


2009 ◽  
Vol 96 (4) ◽  
pp. 793-797 ◽  
Author(s):  
Jing Tang ◽  
Fung Suong Ou ◽  
Huei Pei Kuo ◽  
Min Hu ◽  
William F. Stickle ◽  
...  

2016 ◽  
Vol 40 (9) ◽  
pp. 7286-7289 ◽  
Author(s):  
Yuanchao Zhang ◽  
Jingquan Liu ◽  
Da Li ◽  
Fuhua Yan ◽  
Xin Wang ◽  
...  

Self-assembly of ultrathin gold nanowires and single-walled carbon nanotubes as highly sensitive substrates for surface enhanced Raman spectroscopy.


The Analyst ◽  
2018 ◽  
Vol 143 (10) ◽  
pp. 2310-2322 ◽  
Author(s):  
Rupali Das ◽  
R. K. Soni

DUV-UV (266 nm), UV (325 nm) and visible (532 nm) excitation-wavelength-dependent SERS investigation of adenine molecules on rhodium nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document