Laboratory Studies of Potassium-Halide-Induced High-Temperature Corrosion of Superheater Steels. Part 2: Exposures in Wet Air

2015 ◽  
Vol 29 (4) ◽  
pp. 2709-2718 ◽  
Author(s):  
Hao Wu ◽  
Dorota Bankiewicz ◽  
Patrik Yrjas ◽  
Mikko Hupa
1987 ◽  
Vol 109 (4) ◽  
pp. 299-305 ◽  
Author(s):  
Jun-Ichi Shigeta ◽  
Yoshio Hamao ◽  
Hiroshi Aoki ◽  
Ichiro Kajigaya

Current development of Advanced Steam Cycle coal-fired power plants requires superheater and reheater tubing alloys which can withstand severe conditions for high temperature corrosion. A corrosion equation to predict corrosion rates for candidate alloys has been developed by a study of deposits removed from steam generator tubes and from test probes installed in a boiler, supplemented by laboratory studies using synthetic coal ash. The corrosion equation predicts corrosion for a particular coal as a function of its content of sulfur, acid-soluble alkalies, and acid-soluble aklaline earths. Good agreement was obtained between the corrosion equation and 6000-hour tests using probes of TP347H and 17-14 CuMo.


Alloy Digest ◽  
1995 ◽  
Vol 44 (3) ◽  

Abstract NICROFER 5520 Co is a nickel-chromium-cobalt-molybdenum alloy with excellent strength and creep properties up to high temperatures. Due to its balanced chemical composition the alloy shows outstanding resistance to high temperature corrosion in the form of oxidation and carburization. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-480. Producer or source: VDM Technologies Corporation.


Alloy Digest ◽  
2003 ◽  
Vol 52 (8) ◽  

Abstract Alloy 890 provides improved properties over those of Incoloy alloys 800HT and 803 via the addition of silicon and molybdenum to optimize the performance of the alloy. Alloy 890 is typically 43% Ni, 25% Cr, 1.85 Si, 1.5% Mo, and 0.45% Nb, with the balance being principally iron. The alloy offers a significant improvement in resistance to high-temperature corrosion. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, and joining. Filing Code: Ni-611. Producer or source: Special Metals Corporation.


Alloy Digest ◽  
1972 ◽  
Vol 21 (10) ◽  

Abstract INCONEL ALLOY 671 is a nickel-chromium alloy having excellent resistance to high-temperature corrosion. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-180. Producer or source: Huntington Alloy Products Division, An INCO Company.


Alloy Digest ◽  
1982 ◽  
Vol 31 (6) ◽  

Abstract Type HN is an iron-chromium-nickel alloy containing sufficient chromium for good high-temperature corrosion resistance and with nickel content in excess of the chromium. This alloy has properties somewhat similar to the more widely used ACI Type HT alloy but with better ductility. Type HN is used for highly stressed components in the 1800-2000 F temperature range. It is used in the aircraft, automotive, petroleum, petrochemical and power industries for a wide range of components and parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-410. Producer or source: Various stainless steel casting companies.


Sign in / Sign up

Export Citation Format

Share Document