Effects of a Diesel Particulate Filter on Emission Characteristics of a China II Non-road Diesel Engine

2017 ◽  
Vol 31 (9) ◽  
pp. 9833-9839 ◽  
Author(s):  
Hao Zhong ◽  
Jianwei Tan ◽  
Yulong Wang ◽  
Jinling Tian ◽  
Naitao Hu ◽  
...  
2018 ◽  
Author(s):  
Z. Gerald Liu ◽  
Devin R. Berg ◽  
Thaddeus A. Swor ◽  
James J. Schauer‡

Two methods, diesel particulate filter (DPF) and selective catalytic reduction (SCR) systems, for controlling diesel emissions have become widely used, either independently or together, for meeting increasingly stringent emissions regulations world-wide. Each of these systems is designed for the reduction of primary pollutant emissions including particulate matter (PM) for the DPF and nitrogen oxides (NOx) for the SCR. However, there have been growing concerns regarding the secondary reactions that these aftertreatment systems may promote involving unregulated species emissions. This study was performed to gain an understanding of the effects that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel engine exhaust. Samples were extracted using a source dilution sampling system designed to collect exhaust samples representative of real-world emissions. Testing was conducted on a heavy-duty diesel engine with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF system and then a SCR system. Each of the samples was analyzed for a wide variety of chemical species, including elemental and organic carbon, metals, ions, n-alkanes, aldehydes, and polycyclic aromatic hydrocarbons, in addition to the primary pollutants, due to the potential risks they pose to the environment and public health. The results show that the DPF and SCR systems were capable of substantially reducing PM and NOx emissions, respectively. Further, each of the systems significantly reduced the emission levels of the unregulated chemical species, while the notable formation of new chemical species was not observed. It is expected that a combination of the two systems in some future engine applications would reduce both primary and secondary emissions significantly.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 943 ◽  
Author(s):  
Shuang-xi Liu ◽  
Ming Lü

Diesel particulate filter is one of the most effective after-treatment techniques to reduce Particulate Matters (PM) emissions from a diesel engine, but the blocking Diesel Particulate Filter (DPF) will seriously affect the engine performance, so it is necessary to study the fault diagnosis of blocking DPF. In this paper, a simulation model of an R425DOHC diesel engine with wall-flow ceramic DPF was established, and then the model was verified with experimental data. On this basis, the fault diagnosis of the blocking DPF was studied by using spectral analysis on instantaneous exhaust pressure. The results showed that both the pre-DPF mean exhaust pressure and the characteristic frequency amplitude of instantaneous exhaust pressure can be used as characteristic parameters of monitoring the blockage fault of DPF, but it is difficult to monitor DPF blockage directly by instantaneous exhaust pressure. In terms of sensitivity, the characteristic frequency amplitude of instantaneous exhaust pressure is more suitable as a characteristic parameter to monitor DPF blockage than mean exhaust pressure. This work can lay an important theoretical foundation for the on-board diagnosis of DPF.


Sign in / Sign up

Export Citation Format

Share Document