Effect of Dust Composition on the Reversibility of Photovoltaic Panel Soiling

2021 ◽  
Vol 55 (3) ◽  
pp. 1984-1991
Author(s):  
Hanna F. Varga ◽  
Mark R. Wiesner
2020 ◽  
Vol 22 (4) ◽  
pp. 1439-1452
Author(s):  
Mohamed L. Benlekkam ◽  
Driss Nehari ◽  
Habib Y. Madani

AbstractThe temperature rise of photovoltaic’s cells deteriorates its conversion efficiency. The use of a phase change material (PCM) layer linked to a curved photovoltaic PV panel so-called PV-mirror to control its temperature elevation has been numerically studied. This numerical study was carried out to explore the effect of inner fins length on the thermal and electrical improvement of curved PV panel. So a numerical model of heat transfer with solid-liquid phase change has been developed to solve the Navier–Stokes and energy equations. The predicted results are validated with an available experimental and numerical data. Results shows that the use of fins improve the thermal load distribution presented on the upper front of PV/PCM system and maintained it under 42°C compared with another without fins and enhance the PV cells efficiency by more than 2%.


Author(s):  
Rahim Jafari ◽  
Kaan T. Erkılıç ◽  
Doruk Uğurer ◽  
Yunus Kanbur ◽  
Murat Ö. Yıldız ◽  
...  

Author(s):  
Wichit Sirichote ◽  
Chawin Wuttikornkanarak ◽  
Siwa Srathongkao ◽  
Saisudawan Suttiyan ◽  
Nuttakrit Somdock ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4507
Author(s):  
Paolo Maria Congedo ◽  
Cristina Baglivo ◽  
Giulia Negro

This work proposes a new device for air treatment with dehumidification and water recovery/storage, with possible mitigation of indoor environmental conditions. The system is based on Peltier cells coupled with a horizontal earth-to-air heat exchanger, it is proposed as an easy-to-implement alternative to the heat pumps and air handling units currently used on the market, in terms of cost, ease of installation, and maintenance. The process provides the water collection from the cooling of warm-humid air through a process that leads to condensation and water vapor separation. The airflow generated by a fan splits into two dual flows that lap the two surfaces of the Peltier cells, one flow laps the cold surfaces undergoing sensible, latent cooling with dehumidification; the other flow laps the hot surfaces and heats up. The airflow undergoes thermal pre-treatment through the underground horizontal geothermal pipe that precedes the Peltier cells. In the water storage tank, which also works as a mixing chamber, the two air streams are mixed to regulate the outlet temperature. The system can be stand-alone if equipped with a photovoltaic panel and a micro wind turbine, able to be used in places where electricity is absent. The system, with different configurations, is modeled in the African city Kigali, in Rwanda.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 483
Author(s):  
Novie Ayub Windarko ◽  
Muhammad Nizar Habibi ◽  
Bambang Sumantri ◽  
Eka Prasetyono ◽  
Moh. Zaenal Efendi ◽  
...  

During its operation, a photovoltaic system may encounter many practical issues such as receiving uniform or non-uniform irradiance caused mainly by partial shading. Under uniform irradiance a photovoltaic panel has a single maximum power point. Conversely under non-uniform irradiance, a photovoltaic panel has several local maximum power points and a single global maximum power point. To maximize energy production, a maximum power point tracker algorithm is commonly implemented to achieve the maximum power operating point of the photovoltaic panel. However, the performance of the algorithm will depend on operating conditions such as variation in irradiance. Presently, most of existing maximum power point tracker algorithms work only in a single condition: either uniform or non-uniform irradiance. This paper proposes a new maximum power point tracker algorithm for photovoltaic power generation that is designed to work under uniform and partial shading irradiance conditions. Additionally, the proposed maximum power point tracker algorithm aims to provide: (1) a simple math algorithm to reduce computational load, (2) fast tracking by evaluating progress for every single executed duty cycle, (3) without random steps to prevent jumping duty cycle, and (4) smooth variable steps to increase accuracy. The performances of the proposed algorithm are evaluated by three conditions of uniform and partial shading irradiance where a targeted maximum power point is located: (1) far from, (2) near, and (3) laid between initial positions of particles. The simulation shows that the proposed algorithm successfully tracks the maximum power point by resulting in similar power values in those three conditions. The proposed algorithm could handle the partial shading condition by avoiding the local maxima power point and finding the global maxima power point. Comparisons of the proposed algorithm and other well-known algorithms such as differential evolution, firefly, particle swarm optimization, and grey wolf optimization are provided to show the superiority of the proposed algorithm. The results show the proposed algorithm has better performance by providing faster tracking, faster settling time, higher accuracy, minimum oscillation and jumping duty cycle, and higher energy harvesting.


2021 ◽  
Vol 230 ◽  
pp. 111213
Author(s):  
Sheng Pang ◽  
Yang Yan ◽  
Zhi Wang ◽  
Dong Wang ◽  
Shijian Li ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4271
Author(s):  
Lucia Cattani ◽  
Paolo Cattani ◽  
Anna Magrini

Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology.


Sign in / Sign up

Export Citation Format

Share Document