Soil Nitrous Oxide Emissions by Atmospheric Nitrogen Deposition over Global Agricultural Systems

Author(s):  
Yuyu Yang ◽  
Lei Liu ◽  
Feng Zhang ◽  
Xiuying Zhang ◽  
Wen Xu ◽  
...  
2008 ◽  
Vol 5 (1) ◽  
pp. 213-242 ◽  
Author(s):  
S. Glatzel ◽  
I. Forbrich ◽  
C. Krüger ◽  
S. Lemke ◽  
G. Gerold

Abstract. In Central Europe, most bogs have a history of drainage and many of them are currently being restored. Success of restoration as well as greenhouse gas exchange of these bogs is influenced by environmental stress factors as drought and atmospheric nitrogen deposition. We determined the methane and nitrous oxide exchange of sites in the strongly decomposed center and less decomposed edge of the Pietzmoor bog in NW Germany in 2004. Also, we examined the methane and nitrous oxide exchange of mesocosms from the center and edge before, during, and following a drainage experiment as well as carbon dioxide release from disturbed unfertilized and nitrogen fertilized surface peat. In the field, methane fluxes ranged from 0 to 3.8 mg m−2 h−1 and were highest from hollows. Field nitrous oxide fluxes ranged from 0 to 574 μg m−2 h−1 and were elevated at the edge. A large Eriophorum vaginatum tussock showed decreasing nitrous oxide release as the season progressed. Drainage of mesocosms decreased methane release to 0, even during rewetting. There was a tendency for a decrease of nitrous oxide release during drainage and for an increase in nitrous oxide release during rewetting. Nitrogen fertilization did not increase decomposition of surface peat. Our examinations suggest a competition between vascular vegetation and denitrifiers for excess nitrogen. We also provide evidence that the von Post humification index can be used to explain greenhouse gas release from bogs, if the role of vascular vegetation is also considered. An assessment of the greenhouse gas release from nitrogen saturated restoring bogs needs to take into account elevated release from fresh Sphagnum peat as well as from sedges growing on decomposed peat. Given the high atmospheric nitrogen deposition, restoration will not be able to achieve an oligotrophic ecosystem in the short term.


2014 ◽  
Vol 34 (17) ◽  
Author(s):  
方华军 FANG Huajun ◽  
程淑兰 CHENG Shulan ◽  
于贵瑞 YU Guirui ◽  
王永生 WANG Yongsheng ◽  
徐敏杰 XU Minjie ◽  
...  

2008 ◽  
Vol 5 (3) ◽  
pp. 925-935 ◽  
Author(s):  
S. Glatzel ◽  
I. Forbrich ◽  
C. Krüger ◽  
S. Lemke ◽  
G. Gerold

Abstract. In Central Europe, most bogs have a history of drainage and many of them are currently being restored. Success of restoration as well as greenhouse gas exchange of these bogs is influenced by environmental stress factors as drought and atmospheric nitrogen deposition. We determined the methane and nitrous oxide exchange of sites in the strongly decomposed center and less decomposed edge of the Pietzmoor bog in NW Germany in 2004. Also, we examined the methane and nitrous oxide exchange of mesocosms from the center and edge before, during, and following a drainage experiment as well as carbon dioxide release from disturbed unfertilized and nitrogen fertilized surface peat. In the field, methane fluxes ranged from 0 to 3.8 mg m−2 h−1 and were highest from hollows. Field nitrous oxide fluxes ranged from 0 to 574 μg m−2 h−1 and were elevated at the edge. A large Eriophorum vaginatum tussock showed decreasing nitrous oxide release as the season progressed. Drainage of mesocosms decreased methane release to 0, even during rewetting. There was a tendency for a decrease of nitrous oxide release during drainage and for an increase in nitrous oxide release during rewetting. Nitrogen fertilization did not increase decomposition of surface peat. Our examinations suggest a competition between vascular vegetation and denitrifiers for excess nitrogen. We also provide evidence that the von Post humification index can be used to explain nitrous oxide release from bogs, if the role of vascular vegetation is also considered. An assessment of the greenhouse gas release from nitrogen saturated restoring bogs needs to take into account elevated release from fresh Sphagnum peat as well as from sedges growing on decomposed peat. Given the high atmospheric nitrogen deposition, restoration will not be able to achieve an oligotrophic ecosystem in the short term.


Nitrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 308-320
Author(s):  
D. Nayeli Martínez ◽  
Edison A. Díaz-Álvarez ◽  
Erick de la Barrera

Environmental pollution is a major threat to public health and is the cause of important economic losses worldwide. Atmospheric nitrogen deposition is one of the most significant components of environmental pollution, which, in addition to being a health risk, is one of the leading drivers of global biodiversity loss. However, monitoring pollution is not possible in many regions of the world because the instrumentation, deployment, operation, and maintenance of automated systems is onerous. An affordable alternative is the use of biomonitors, naturally occurring or transplanted organisms that respond to environmental pollution with a consistent and measurable ecophysiological response. This policy brief advocates for the use of biomonitors of atmospheric nitrogen deposition. Descriptions of the biological and monitoring particularities of commonly utilized biomonitor lichens, bryophytes, vascular epiphytes, herbs, and woody plants, are followed by a discussion of the principal ecophysiological parameters that have been shown to respond to the different nitrogen emissions and their rate of deposition.


Sign in / Sign up

Export Citation Format

Share Document