Dry Climate Aggravates Riverine Nitrogen Pollution in Australia by Water Volume Reduction

Author(s):  
Yi Sun ◽  
Xiuming Zhang ◽  
Stefan Reis ◽  
Deli Chen ◽  
Jianming Xu ◽  
...  
2018 ◽  
Vol 35 (04) ◽  
pp. 306-314 ◽  
Author(s):  
Yoshichika Yasunaga ◽  
Daisuke Yanagisawa ◽  
Erika Ohata ◽  
Kiyoshi Matsuo ◽  
Shunsuke Yuzuriha

Background Although lymphedema is fundamentally abnormal accumulation of excess water in the extracellular space, previous studies have evaluated the efficacy of physiological bypass surgery (lymphaticovenular anastomosis [LVA]) for lymphedema without measuring water volume. This study clarified the water reductive effect of LVA using bioelectrical impedance analysis (BIA). Methods The efficacy of LVA for unilateral lower-limb lymphedema was evaluated using BIA in a retrospective cohort. The water volume of affected and unaffected legs was measured using multifrequency BIA before and after LVA. Preoperative measurements were undertaken after compression therapy for at least 3 months. The follow-up period after LVA was a minimum of 6 months. Results Thirty consecutive patients with unilateral lower-limb lymphedema were enrolled. The mean water volume reduction of the affected leg by LVA (ΔLBW) was 0.86 L (standard deviation [SD]: 0.86, median: 0.65) with a mean number of 3.3 anastomoses (SD: 1.7). The mean reduction rate of edema was 45.1% (SD: 36.3). Multiple linear regression analysis revealed water volume difference between the affected and unaffected legs before LVA (excess LBW) as the strongest predictor of ΔLBW (R 2 = 0.759, p < 0.01; β = 0.500, p < 0.01). Conclusion The LVA reduces the volume of accumulated body water in lower-limb lymphedema. As excess LBW most strongly predicted the amount of water volume reduction by LVA, body water volume measurement by BIA before LVA might identify patients with low excess LBW not expected to benefit from LVA, regardless of apparent differences in limb circumference.


2020 ◽  
Vol 36 (09) ◽  
pp. 660-666 ◽  
Author(s):  
Yoshichika Yasunaga ◽  
Daisuke Yanagisawa ◽  
Yuta Nakajima ◽  
Shinei Mimura ◽  
Miharu Kobayashi ◽  
...  

Abstract Background We previously examined the water reductive effect of lymphaticovenular anastomosis (LVA) using bioelectrical impedance analysis (BIA) measurement on lower-limb lymphedema and revealed mean water volume reduction and edema reduction rate by leg LVA to be 0.86 L and 45.1%, respectively. This study aimed to clarify the water reductive effect of LVA on arm lymphedema and compare its results with those for leg lymphedema. Patients and Methods The efficacy of LVA for unilateral arm lymphedema was evaluated using BIA in a retrospective cohort. Limb circumference and arm body water volume (ABW) of the affected and unaffected arms were measured before and after LVA. Mean water volume reduction (ΔABW) and edema reduction rate by arm LVA were compared with values for leg LVA cited from our previous report as a historical control. Results Nineteen consecutive patients were enrolled. The mean ΔABW and edema reduction rate by BIA were 0.267 L and 46.0%, respectively. The decreasing rate of ABW by BIA was significantly larger than those of the upper extremity lymphedema index and sum of 5 circumferences measurement methods. ΔABW could be predicted by a regression line based on the preoperative water volume difference between affected and unaffected limbs. The mean edema reduction rates for arm and leg LVA were comparable. Conclusion The water reductive effect of LVA on upper-limb lymphedema was demonstrated by BIA assessment. BIA can reflect the effect of LVA more sensitively than conventional objective measurements and may facilitate the interpretation of LVA results. Although water volume reduction by arm LVA was less than that by leg LVA, the edema reduction rates were comparable.


2016 ◽  
Vol 50 (11) ◽  
pp. 6044-6052 ◽  
Author(s):  
Joel Minier-Matar ◽  
Ana Santos ◽  
Altaf Hussain ◽  
Arnold Janson ◽  
Rong Wang ◽  
...  

2018 ◽  
Vol 30 (0) ◽  
Author(s):  
Carlos Alberto Nascimento da Rocha Junior ◽  
Mariana Rodrigues Amaral da Costa ◽  
Rosemberg Fernandes Menezes ◽  
José Luiz Attayde ◽  
Vanessa Becker

Abstract Aim Global patterns of temperature and precipitation have significantly changed over the last century and nearly all predictions point to even greater changes by the end of 2100. Long periods of drought in semi-arid regions generally reduce reservoirs and lakes water level, increasing the nutrients concentrations in the water. Our principal hypothesis is that water volume reduction, driven by prolonged droughts, will increase reservoirs susceptibility to eutrophication and accordingly an increase in trophic state. To test this hypothesis, we used a comparative analysis of ecosystems in a space-for-time substitution approach, in a Brazilian semi-arid region, to predict the consequences of reservoirs water volume reduction on key limnological variables. Methods We sampled 16 reservoirs located in two sub-basins with contrasting rainfall regimes, inserted on Piranhas-Açu watershed. The Seridó River basin (SB) is dry and the Piancó River basin (SB) is humid, with annual mean precipitation of 500 and 700 mm, respectively. Linear regressions analyzes were performed to assess whether the percentage of maximum volume stored (%MVS) is a good predictor for total phosphorus (TP), total nitrogen (TN) and chlorophyll-a (CHLA). In addition, a two factorial analysis of variance (two-way ANOVA) was performed to test for period (dry, very dry and extremely dry), basin (SB and PB) and their interactions effects on TP, TN, CHLA, conductivity, turbidity, and Secchi depth. Results The results showed a reduction in the reservoirs %MVS both for PB and SB regions. At the extremely dry period, all reservoirs were classified as eutrophic, but TP concentrations reached much higher values in SB than in PB. The linear regressions analyses showed that the TP and TN were negatively related to %MVS during all periods sampled. The two-way ANOVA showed that there were significant basin and period effects on TP, TN, Secchi depth and turbidity, whereas for CHLA and conductivity only basin effects were observed. In addition, we found significant interaction effects between period and basin on TP, TN and turbidity. Conclusions We conclude that the contrasting levels of rainfall observed between the two basins affect the water quality and trophic state of the reservoirs and these effects are magnified by water volume reduction. Therefore, our findings might help to predict the consequences of rainfall reductions on freshwater ecosystems of Brazilian drylands.


2019 ◽  
Vol 9 (3) ◽  
pp. 319-329
Author(s):  
Chunbo Jiang ◽  
Jiake Li ◽  
Huaien Li ◽  
Yajiao Li

Abstract Bioretention can reduce surface runoff, slow down peak flow, and delay peak time by increasing the infiltration capacity of the underlying surface. The media structure directly affects the performance of bioretention systems. Four pilot tanks with different media configuration were built, and hydraulics and water volume reduction were studied though intermittent, simulated storm events. The results showed that water volume and peak flow reduction rate were the most stable and efficient for #1 (fly ash mixing sand, 1:1 by volume) than other systems, which were 58.6–67.9% and 72.0–86.4%, respectively. Partial least squares regression (PLS) was used to build a model for the relation between water volume reduction rate and its influencing factors (R2 = 0.76), and the factors that influence bioretention water volume reduction were ranked from strongest to weakest as follows: infiltration rate (IR) &gt; submerged area height (SAH) &gt; inflow volume (IV) &gt; antecedent dry time (ADT). In addition, volume reduction rate exhibited a positive correlation with ADT and SAH, and a negative correlation with IR and IV. Three water transfer simulations with different infiltration rates were conducted using HYDRUS-1D under designed inflow conditions, and the minimum relative error is obtained for #1.


2012 ◽  
Vol 43 (01) ◽  
Author(s):  
M Obermann ◽  
R Rodriguez-Raecke ◽  
S Nägel ◽  
D Holle ◽  
N Theysohn ◽  
...  

Pneumologie ◽  
2014 ◽  
Vol 68 (S 01) ◽  
Author(s):  
C Pizarro ◽  
R Schueler ◽  
C Hammerstingl ◽  
J Kreuz ◽  
U Juergens ◽  
...  

Pneumologie ◽  
2015 ◽  
Vol 69 (S 01) ◽  
Author(s):  
C Pizarro ◽  
H Ahmadzadehfar ◽  
M Essler ◽  
G Nickenig ◽  
D Skowasch

Sign in / Sign up

Export Citation Format

Share Document