Obesogenic Effect of Sulfamethoxazole on Drosophila melanogaster with Simultaneous Disturbances on Eclosion Rhythm, Glucolipid Metabolism, and Microbiota

2020 ◽  
Vol 54 (9) ◽  
pp. 5667-5675 ◽  
Author(s):  
Zhenyang Yu ◽  
Jiaying Shen ◽  
Zhuo Li ◽  
Jinmin Yao ◽  
Wenzhe Li ◽  
...  

2021 ◽  
pp. 074873042199726
Author(s):  
Arijit Ghosh ◽  
Pragya Sharma ◽  
Shephali Dansana ◽  
Vasu Sheeba

Heritable variation in the timing of rhythmic events with respect to daily time cues gives rise to chronotypes. Despite its importance, the mechanisms (clock or non-clock) regulating chronotypes remain elusive. Using artificial laboratory selection for divergent phasing of emergence of adults from pupae, our group has derived populations of Drosophila melanogaster which are early and late chronotypes for eclosion rhythm. Several circadian rhythm characteristics of these populations have since been described. We hypothesized that our selection protocol has inadvertently resulted in selection for masking, a non-clock phenomenon, in the early chronotype due to the placement of our selection window (which includes the lights-ON transition). We designed experiments to discriminate between enhanced masking to light versus circadian clock mediated changes in determining enhanced emergence in the morning window in our early chronotypes. Using a series of phase-shift protocols, LD-DD transition, and T-cycle experiments, we find that our early chronotypes have evolved positive masking, and their apparent entrained phases are largely contributed by masking. Through skeleton T-cycle experiments, we find that in addition to the evolution of greater masking, our early chronotypes have also evolved advanced phase of entrainment. Furthermore, our study systematically outlines experimental approaches to examine relative contributions of clock versus non-clock control of an entrained behavior. Although it has previously been suggested that masking may confer an adaptive advantage to organisms, here we provide experimental evidence for the evolution of masking as a means of phasing that can complement clock control of an entrained behavior.



2020 ◽  
Author(s):  
Arijit Ghosh ◽  
Pragya Sharma ◽  
Shephali Dansana ◽  
Vasu Sheeba

AbstractHeritable variation in the timing or circadian phases of rhythmic events with respect to daily time cues gives rise to chronotypes. Despite its importance, the mechanisms (clock or non-clock) regulating chronotypes remain elusive. Using artificial laboratory selection for divergent phasing of emergence of adults from pupae, our group has derived populations of Drosophila melanogaster which are early and late chronotypes for eclosion rhythm. Several circadian rhythm characteristics of these populations have since been described. We hypothesized that our selection protocol has inadvertently resulted in selection for masking, a non-clock phenomenon, in the early chronotype due to the placement of our selection window (which includes the lights-ON transition). Based on theoretical predictions and previous studies on our populations, we designed experiments to discriminate between enhanced masking to light versus circadian clock mediated changes in determining enhanced emergence in the morning window in our early chronotypes. Using a series of phase-shift protocols, LD-DD transition, and T-cycle experiments, we find that our early chronotypes have evolved positive masking, and their apparent entrained phases are largely contributed by masking. Through skeleton T-cycle experiments, we find that in addition to the evolution of greater masking, our early chronotypes have also evolved advanced phase of entrainment. Furthermore, our study systematically outlines experimental approaches to examine relative contributions of clock versus non-clock control of an entrained behavior. Although it has previously been suggested that masking may confer an adaptive advantage to organisms, here we provide experimental evidence for the evolution of masking as a mean of phasing of an entrained rhythm that can complement clock control of an entrained behavior.



1997 ◽  
Vol 17 (10) ◽  
pp. 5915-5922 ◽  
Author(s):  
J Majercak ◽  
D Kalderon ◽  
I Edery

Drosophila melanogaster bearing mutations in the DCO gene, which encodes the major catalytic subunit of cAMP-dependent protein kinase (PKA), displays arrhythmic locomotor activity strongly suggesting a role for PKA in the circadian timing system. This arrhythmicity might result from a requirement for PKA activity in photic resetting pathways, the timekeeping mechanism itself, or downstream effector pathways controlling overt behavioral rhythms. To address these possibilities, we examined the protein and mRNA products from the clock gene period (per) in PKA-deficient flies. The per protein (PER) and mRNA products undergo daily cycles in the heads and bodies of DCO mutants that are indistinguishable from those observed in control wild-type flies. These results indicate that PKA deficiencies affect the proper functioning of elements downstream of the Drosophila timekeeping mechanism. The requirement for PKA in the manifestation of rhythmic activity was preferentially greater in the absence of environmental cycles. However, PKA does not appear to play a universal role in output functions because the clock-controlled eclosion rhythm is normal in DCO mutants. Our results suggest that PKA plays a critical role in the flow of temporal information from circadian pacemaker cells to selective behaviors.



2019 ◽  
Vol 34 (6) ◽  
pp. 596-609 ◽  
Author(s):  
Lakshman Abhilash ◽  
Arijit Ghosh ◽  
Vasu Sheeba

Circadian rhythms in adult eclosion of Drosophila are postulated to be regulated by a pair of coupled oscillators: one is the master clock that is light sensitive and temperature compensated and the other that is a slave oscillator whose period is temperature sensitive and whose phase is reflected in the overt behavior. Within this framework, we reasoned that in populations of Drosophila melanogaster that have been artificially selected for highly divergent phases of eclosion rhythm, there may be changes in this network of the master-slave oscillator system, via changes in the temperature-sensitive oscillator and/or the coupling of the light- and temperature-sensitive oscillators. We used light/dark cycles in conjunction with different constant ambient temperatures and 2 different amplitudes of temperature cycles in an overall cool or warm temperature and analyzed phases, gate width, and normalized amplitude of the rhythms in each of these conditions. We found that the populations selected for eclosion in the morning ( early flies) do not vary their phases with change in temperature regimes, whereas the populations selected for eclosion in the evening ( late flies) show phase lability of up to ~5 h. Our results imply a genetic correlation between timing of behavior and temperature sensitivity of the circadian clock.



1999 ◽  
Vol 86 (9) ◽  
pp. 448-449 ◽  
Author(s):  
V. Sheeba ◽  
V. K. Sharma ◽  
M. K. Chandrashekaran ◽  
A. Joshi


2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  


2001 ◽  
Vol 7 (S2) ◽  
pp. 1012-1013
Author(s):  
Uyen Tram ◽  
William Sullivan

Embryonic development is a dynamic event and is best studied in live animals in real time. Much of our knowledge of the early events of embryogenesis, however, comes from immunofluourescent analysis of fixed embryos. While these studies provide an enormous amount of information about the organization of different structures during development, they can give only a static glimpse of a very dynamic event. More recently real-time fluorescent studies of living embryos have become much more routine and have given new insights to how different structures and organelles (chromosomes, centrosomes, cytoskeleton, etc.) are coordinately regulated. This is in large part due to the development of commercially available fluorescent probes, GFP technology, and newly developed sensitive fluorescent microscopes. For example, live confocal fluorescent analysis proved essential in determining the primary defect in mutations that disrupt early nuclear divisions in Drosophila melanogaster. For organisms in which GPF transgenics is not available, fluorescent probes that label DNA, microtubules, and actin are available for microinjection.



2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.



Sign in / Sign up

Export Citation Format

Share Document