Liquid–Liquid Microfluidic Flows for Ultrafast 5-Hydroxymethyl Furfural Extraction

2021 ◽  
Vol 60 (9) ◽  
pp. 3723-3735
Author(s):  
Tai-Ying Chen ◽  
Pierre Desir ◽  
Mauro Bracconi ◽  
Basudeb Saha ◽  
Matteo Maestri ◽  
...  
2021 ◽  
Author(s):  
Niklas Warlin ◽  
Erik Nilsson ◽  
Zengwei Guo ◽  
Smita Mankar ◽  
Nitin Valsange ◽  
...  

A rigid diol with a cyclic acetal structure was synthesized by facile acetalation of fructose-based 5-hydroxymethyl furfural (HMF) and partly bio-based di-trimethylolpropane (di-TMP). This diol (Monomer T) was copolymerized with...


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 437 ◽  
Author(s):  
Ralentri Pertiwi ◽  
Ryan Oozeerally ◽  
David L. Burnett ◽  
Thomas W. Chamberlain ◽  
Nikolay Cherkasov ◽  
...  

The metal–organic framework MIL-101(Cr) is known as a solid–acid catalyst for the solution conversion of biomass-derived glucose to 5-hydroxymethyl furfural (5-HMF). We study the substitution of Cr3+ by Fe3+ and Sc3+ in the MIL-101 structure in order to prepare more environmentally benign catalysts. MIL-101(Fe) can be prepared, and the inclusion of Sc is possible at low levels (10% of Fe replaced). On extended synthesis times the polymorphic MIL-88B structure instead forms.Increasing the amount of Sc also only yields MIL-88B, even at short crystallisation times. The MIL-88B structure is unstable under hydrothermal conditions, but in dimethylsulfoxide solvent, it provides 5-HMF from glucose as the major product. The optimum material is a bimetallic (Fe,Sc) form of MIL-88B, which provides ~70% conversion of glucose with 35% selectivity towards 5-HMF after 3 hours at 140 °C: this offers high conversion compared to other heterogeneous catalysts reported in the same solvent.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shaopeng Li ◽  
Minghua Dong ◽  
Junjuan Yang ◽  
Xiaomeng Cheng ◽  
Xiaojun Shen ◽  
...  

Abstract5-Methylfurfural (MF) is a very useful chemical. Selective hydrogenation of biomass platform molecule 5-(hydroxymethyl)furfural (HMF) to MF using H2 as the reducing agent is very attractive, but challenging because hydrogenation of C=O bond in HMF is more favourable than C–OH both kinetically and thermodynamically, and this route has not been realized. In this work, we prepare isolated single atomic catalysts (SACs) Pt1/Nb2O5-Ov, Pd1/Nb2O5-Ov, and Au1/Nb2O5-Ov, in which single metal atoms are supported on oxygen defective Nb2O5 (Nb2O5-Ov). It is discovered that the SACs can efficiently catalyze the hydrogenation of HMF to MF using H2 as the reducing agent with MF selectivity of >99% at complete conversion, while the selectivities of the metal nanocatalysts supported on Nb2O5 are very poor. A combination of experimental and density function theory (DFT) studies show that the unique features of the SACs for the reaction result from the cooperation of the Nb and Pt sites near the interface in the Pt1/Nb2O5-Ov. The Pt atoms are responsible for the activation of H2 and the Nb sites activate C-OH in the reaction. This work opens the way for producing MF by direct hydrogenation of biomass-derived HMF using H2 as the reductant.


Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1283 ◽  
Author(s):  
María Isabel Igeño ◽  
Rubén Sánchez-Clemente ◽  
Ana G. Población ◽  
M. Isabel Guijo ◽  
Faustino Merchán ◽  
...  

Furfural and 5-hydroxymethylfurfural (HMF) are degradation products of lignocellulose during pretreatment operations. Furfural compounds are a group of chemical compounds whose common thread is an aldehyde group attached to a furan ring, and they constitute a problem for the development of second-generation biofuels because they act as fermentation inhibitors of the lignocellulose hydrolysates. Up to date, very few bacteria have been described to be able to eliminate them. The objective of this work was to isolate and characterize bacterial strains able to use, as the sole carbon source, 5-(hydroxymethyl)-furfural (HMF) and furan derivatives.


2011 ◽  
Vol 17 (5) ◽  
pp. 1369-1369 ◽  
Author(s):  
Tim Ståhlberg ◽  
Sergio Rodriguez-Rodriguez ◽  
Peter Fristrup ◽  
Anders Riisager

RSC Advances ◽  
2014 ◽  
Vol 4 (60) ◽  
pp. 31829-31835 ◽  
Author(s):  
Zhongshun Yuan ◽  
Yongsheng Zhang ◽  
Chunbao (Charles) Xu

A formaldehyde-free phenolic resin – phenol-hydroxymethylfurfural (PHMF) resin was synthesized for the first time using HMF in situ derived from glucose.


2012 ◽  
Vol 550-553 ◽  
pp. 103-106
Author(s):  
Ying Liu ◽  
Lu Lin ◽  
Xiao Yu Sui ◽  
Jun Ping Zhuang ◽  
Chun Sheng Pang

The effects of catalyst amount on the yields of levulinic and hydroxymethyl furfural were investigated during conversion of glucose to levulinic acid catalyzed by solid super acid SO42- / TiO2-Al2O3-SnO2. XRD and XPS were used to analyse the characteristics of solid super acid SO42- / TiO2-Al2O3-SnO2 before reaction and after reaction. The results showed that: solid super acid SO42- / TiO2-Al2O3-SnO2exhibited good catalytic activity in the reaction of hydrolysis of glucose to produce levulinic acid. There were three obvious peaks in these XRD spectra. The peaks on 44.6° and 67.1° were the characteristic diffraction peaks of γ-Al2O3. The anatase characteristic diffraction peak was on 37.4°. The catalyst was steady in the process. The binding energy of S 2p was similar to the binding energy of standard S6+ 2p in the S 2p XPS spectrum of solid super acid. O 1s XPS was double-peaked spectrum. The increase of element C was the main reason of inactivation of catalyst.


Sign in / Sign up

Export Citation Format

Share Document