Mechanism of Electrocatalytic Wet Air Oxidation of PPCPs over Solid Catalysts: Kinetic Insight with a Universal Model

Author(s):  
Min Sun ◽  
Miao-Miao Hou ◽  
Xian-Zhang Wang ◽  
Bao-Jun Yang ◽  
Lin-Feng Zhai ◽  
...  
1997 ◽  
Vol 35 (4) ◽  
pp. 311-319 ◽  
Author(s):  
L. Lei ◽  
X. Hu ◽  
H. P. Chu ◽  
G. Chen ◽  
P. L. Yue

The treatment of dyeing and printing wastewater from the textile industry by oxidation was studied. The reaction was carried out in a two-litre high pressure reactor. In order to promote the oxidation of organic pollutants present in the wastewater, experiments were conducted using various catalysts including metal salts, metal oxides, and porous alumina supported metals. All catalysts tested were able to enhance the conversion of organic compounds in wastewater, shorten the reaction time, and lower the reaction temperature. The alumina supported catalyst has an advantage over other catalysts in that it can be easily separated from the treated wastewater by filtration and recycled. The conditions in preparing the catalyst supported by porous alumina were experimentally optimised.


Author(s):  
Mohamed Achraf Bouabdellah ◽  
Itidel Belkadhi ◽  
Lassaad Ben Hammouda ◽  
Gwendoline Lafaye ◽  
Francisco Medina Cabello ◽  
...  

2021 ◽  
Vol 23 (4) ◽  
pp. 1847-1860
Author(s):  
Christopher S. McCallum ◽  
Wanling Wang ◽  
W. John Doran ◽  
W. Graham Forsythe ◽  
Mark D. Garrett ◽  
...  

A life cycle thinking analysis (LCT) conducted on the production of vanillin via bamboo wet air oxidation compared to vanillin production from crude oil or kraft lignin.


Author(s):  
Valérie Boucher ◽  
Margot Beaudon ◽  
Pedro Ramirez ◽  
Pascal Lemoine ◽  
Kalyssa Volk ◽  
...  

Removal of pharmaceuticals from wastewater using chemical processes is a promising solution to mitigate pollution in drinking and surface waters. Non-catalytic wet air oxidation (WAO) is a highly efficient advanced...


2009 ◽  
Vol 91 (1-2) ◽  
pp. 180-188 ◽  
Author(s):  
David M. Dotzauer ◽  
Ali Abusaloua ◽  
Sylvain Miachon ◽  
Jean-Alain Dalmon ◽  
Merlin L. Bruening

1999 ◽  
Vol 33 (22) ◽  
pp. 4092-4095 ◽  
Author(s):  
Richard M. Dinsdale ◽  
Mats Almemark ◽  
Freda R. Hawkes ◽  
Dennis L. Hawkes

2016 ◽  
Vol 75 (3) ◽  
pp. 619-628 ◽  
Author(s):  
Melike Isgoren ◽  
Erhan Gengec ◽  
Sevil Veli

This paper deals with finding optimum reaction conditions for wet air oxidation (WAO) of malathion aqueous solution, by Response Surface Methodology. Reaction conditions, which affect the removal efficiencies most during the non-catalytic WAO system, are: temperature (60–120 °C), applied pressure (20–40 bar), the pH value (3–7), and reaction time (0–120 min). Those were chosen as independent parameters of the model. The interactions between parameters were evaluated by Box-Behnken and the quadratic model fitted very well with the experimental data (29 runs). A higher value of R2 and adjusted R2 (>0.91) demonstrated that the model could explain the results successfully. As a result, optimum removal efficiency (97.8%) was obtained at pH 5, 20 bars of pressure, 116 °C, and 96 min. These results showed that Box–Behnken is a suitable design to optimize operating conditions and removal efficiency for non-catalytic WAO process. The EC20 value of raw wastewater was measured as 35.40% for malathion (20 mg/L). After the treatment, no toxicity was observed at the optimum reaction conditions. The results show that the WAO is an efficient treatment system for malathion degradation and has the ability of converting malathion to the non-toxic forms.


Sign in / Sign up

Export Citation Format

Share Document