Novel Sorption-Enhanced Methanation with Simultaneous CO2 Removal for the Production of Synthetic Natural Gas

2016 ◽  
Vol 55 (34) ◽  
pp. 9244-9255 ◽  
Author(s):  
Soo Ik Im ◽  
Ki Bong Lee
2012 ◽  
Vol 608-609 ◽  
pp. 1419-1423
Author(s):  
Guo Hui Song ◽  
Qing Yuan Song ◽  
Lai Hong Shen ◽  
Jun Xiao

A simulation of syngas-to-synthetic natural gas (SNG) process is presented. It mainly consists of the modeling of methanation process via a fluidized bed reactor and CO2 removal via Selexol absorption process. The effects of methanation temperature and pressure on the composition, yield and higher heating value (HHV) of SNG, as well as exergy efficiency of the process were investigated. The results indicate that the methanation temperature with a range of 300 °C to 350 °C and methation pressure with a range of 2.5 bar to 15 bar are recommended for the syngas-to-SNG process. The CO2 removal efficiency should be carefully determined to make the composition of SNG meet the relevant technical requirement. The syngas-to-SNG process with heat recovery has high exergy efficiency, which varies from 90.9% to 94.5%. There is less potential for improving the exergy efficiency of the process.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Tae Young Kim ◽  
Seong Bin Jo ◽  
Jin Hyeok Woo ◽  
Jong Heon Lee ◽  
Ragupathy Dhanusuraman ◽  
...  

Co–Fe–Al catalysts prepared using coprecipitation at laboratory scale were investigated and extended to pilot scale for high-calorific synthetic natural gas. The Co–Fe–Al catalysts with different metal loadings were analyzed using BET, XRD, H2-TPR, and FT-IR. An increase in the metal loading of the Co–Fe–Al catalysts showed low spinel phase ratio, leading to an improvement in reducibility. Among the catalysts, 40CFAl catalyst prepared at laboratory scale afforded the highest C2–C4 hydrocarbon time yield, and this catalyst was successfully reproduced at the pilot scale. The pelletized catalyst prepared at pilot scale showed high CO conversion (87.6%), high light hydrocarbon selectivity (CH4 59.3% and C2–C4 18.8%), and low byproduct amounts (C5+: 4.1% and CO2: 17.8%) under optimum conditions (space velocity: 4000 mL/g/h, 350 °C, and 20 bar).


Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 697
Author(s):  
Tae-Young Kim ◽  
Seongbin Jo ◽  
Yeji Lee ◽  
Suk-Hwan Kang ◽  
Joon-Woo Kim ◽  
...  

Fe-Ni and Co-Fe-Ni catalysts were prepared by the wet impregnation method for the production of high-calorific synthetic natural gas. The influence of Ni addition to Fe and Co-Fe catalyst structure and catalytic performance was investigated. The results show that the increasing of Ni amount in Fe-Ni and Co-Fe-Ni catalysts increased the formation of Ni-Fe alloy. In addition, the addition of nickel to the Fe and Co-Fe catalysts could promote the dispersion of metal and decrease the reduction temperature. Consequently, the Fe-Ni and Co-Fe-Ni catalysts exhibited higher CO conversion compared to Fe and Co-Fe catalysts. A higher Ni amount in the catalysts could increase C1–C4 hydrocarbon production and reduce the byproducts (C5+ and CO2). Among the catalysts, the 5Co-15Fe-5Ni/γ-Al2O3 catalyst affords a high light hydrocarbon yield (51.7% CH4 and 21.8% C2–C4) with a low byproduct yield (14.1% C5+ and 12.1% CO2).


Author(s):  
Jose Antonio Medrano ◽  
Margot Anabell Llosa-Tanco ◽  
David Alfredo Pacheco Tanaka ◽  
Fausto Gallucci

Sign in / Sign up

Export Citation Format

Share Document