co2 valorization
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 28)

H-INDEX

10
(FIVE YEARS 4)

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123055
Author(s):  
Judith González-Arias ◽  
Francisco M. Baena-Moreno ◽  
Miriam González-Castaño ◽  
Harvey Arellano-García

2021 ◽  
Author(s):  
Sebastian Thor Wismann ◽  
Kasper Emil Larsen ◽  
Peter Mølgaard Mortensen

Author(s):  
Sebastian Thor Wismann ◽  
Kasper Emil Larsen ◽  
Peter Mølgaard Mortensen

2021 ◽  
Author(s):  
Stefano Cestellos-Blanco ◽  
Sheena Louisia ◽  
Michael Ross ◽  
Yifan Li ◽  
Tyler Detomasi ◽  
...  

CO2 valorization is aimed at converting waste CO2 to value-added products. While steady progress has been achieved through diverse catalytic strategies, including CO2 electrosynthesis, CO2 thermocatalysis, and biological CO2 fixation, each of these approaches have distinct limitations. Inorganic catalysts only enable synthesis beyond C2 and C3 products with poor selectivity and with a high energy requirement. Meanwhile, although biological organisms can selectively produce complex products from CO2, their slow autotrophic metabolism limits their industrial feasibility. Here, we present an abiotic approach leveraging electrochemical and thermochemical catalysis to complete the conversion of CO2 to life-sustaining carbohydrate sugars akin to photosynthesis. CO2 was electrochemically converted to glycolaldehyde and formaldehyde using copper nanoparticles and boron-doped diamond cathodes, respectively. CO2-derived glycolaldehyde then served as the key autocatalyst for the formose reaction, where glycolaldehyde and formaldehyde combined in the presence of an alkaline earth metal catalyst to form a variety of C4 - C8 sugars, including glucose. In turn, these sugars were used as a feedstock for fast-growing and genetically modifiable Escherichia coli. Altogether, we have assembled a platform that pushes the boundaries of product complexity achievable from CO2 conversion while demonstrating CO2 integration into life-sustaining sugars.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 883
Author(s):  
Hanna Kierzkowska-Pawlak ◽  
Małgorzata Ryba ◽  
Maciej Fronczak ◽  
Ryszard Kapica ◽  
Jan Sielski ◽  
...  

The hydrogenation of CO2 to produce CO and H2O, known as reverse-water-gas shift reaction (RWGS) is considered to be an important CO2 valorization pathway. This work is aimed at proposing the thin-film catalysts based on iron and cobalt oxides for this purpose. A series of Fe–Co nanocomposites were prepared by the plasma-enhanced chemical vapor deposition (PECVD) from organic cobalt and iron precursors on a wire-mesh support. The catalysts were characterized by SEM/EDX, XPS, XRD, and Raman spectroscopy and studied for hydrogenation of CO2 in a tubular reactor operating in the temperature range of 250–400 °C and atmospheric pressure. The Co-based catalyst, containing crystalline CoO phase, exhibited high activity toward CH4, while the Fe-based catalyst, containing crystalline Fe2O3/Fe3O4 phases, was less active and converted CO2 mainly into CO. Regarding the Fe–Co nanocomposites (incl. Fe2O3/Fe3O4 and CoO), even a small fraction of iron dramatically inhibited the production of methane. With increasing the atomic fraction of iron in the Fe–Co systems, the efficiency of the RWGS reaction at 400 °C increased up to 95% selectivity to CO and 30% conversion of CO2, which significantly exceeded the conversion for pure iron–based films (approx. 9%). The superior performance of the Fe–Co nanocomposites compared to “pure” Co and Fe–based films was proposed to be explained by assuming changes in the electronic structure of the catalyst resulting from the formation of p–n junctions between nanoparticles of cobalt and iron oxides.


2021 ◽  
Vol 287 ◽  
pp. 119934
Author(s):  
Xiao Li ◽  
Wanmei He ◽  
Chuanhao Li ◽  
Bo Song ◽  
Shengwei Liu

Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 500
Author(s):  
Juan Antonio Cecilia ◽  
Daniel Ballesteros Plata ◽  
Enrique Vilarrasa García

After the industrial revolution, the increase in the world population and the consumption of fossil fuels has led to an increase in anthropogenic CO2 emissions [...]


Sign in / Sign up

Export Citation Format

Share Document