110th Anniversary: High Performance Carbon Molecular Sieve Membrane Resistance to Aggressive Feed Stream Contaminants

2019 ◽  
Vol 58 (16) ◽  
pp. 6740-6746 ◽  
Author(s):  
Rachana Kumar ◽  
William J. Koros
2019 ◽  
Vol 7 (12) ◽  
pp. 7082-7091 ◽  
Author(s):  
P. H. Tchoua Ngamou ◽  
M. E. Ivanova ◽  
O. Guillon ◽  
W. A. Meulenberg

Successful synthesis of a ceramic-supported ultrathin carbon membrane with unprecedently high hydrogen permeance and outstanding H2/CO2, H2/N2 and H2/CH4 selectivities at elevated temperatures.


2020 ◽  
Vol 4 (1) ◽  
pp. 23-35
Author(s):  
Fatin Nurwahdah Ahmad ◽  
Norazlianie Sazali ◽  
Mohd Hafiz Dzafran Othman

Membrane-based technology has proved its practicality in gas separation through its performance. Various type of membranes has been explored, showing that each type of them have their own advantages and disadvantages. Polymeric membranes have been widely used to separate O2/N2, however, its drawbacks lead to the development of carbon molecular sieve membrane. Carbon molecular sieve membranes have demonstrated excellent separation performance for almost similar kinetic diameter molecules such as O2/N2. Many polymer precursors can be used to produce carbon molecular sieve membrane through carbonization process or also known as heat treatment. This paper discusses the variety of precursors and carbonization parameters to produce high quality and performance of carbon molecular sieve membranes.  This paper covers the evaluation in advancement and status of high-performance carbon membrane implemented for separating gas, comprising the variety of precursor materials and the fabrication process that involve many different parameters, also analysis of carbon membranes properties in separating various type of gas having high demand in the industries. The issues regarding the current challenges in developing carbon membrane and approaches with the purpose of solving and improving the performance and applications of carbon membrane are included in this paper. Also, the advantages of the carbon membrane compared to other types of membranes are highlighted. Observation and understanding the variables affecting the quality of membrane encourage the optimization of conditions and techniques in producing high-performance membrane.


2021 ◽  
Author(s):  
Seong-Joong Kim ◽  
YongSung Kwon ◽  
DaeHun Kim ◽  
Hosik Park ◽  
Young Hoon Cho ◽  
...  

A high-performance thin carbon molecular sieve (CMS) composite membrane was prepared using a drop-coating process for dehydration of a ternary mixture (water/IPA/ECH) by a pervaporation process.


Carbon ◽  
2013 ◽  
Vol 53 ◽  
pp. 101-111 ◽  
Author(s):  
Yi Hui Sim ◽  
Huan Wang ◽  
Fu Yun Li ◽  
Mei Ling Chua ◽  
Tai-Shung Chung ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 104
Author(s):  
Hung-Yang Kuo ◽  
Wei-Riu Cheng ◽  
Tzu-Heng Wu ◽  
Horn-Jiunn Sheen ◽  
Chih-Chia Wang ◽  
...  

This paper presents the synthesis and evaluation of a carbon molecular sieve membrane (CMSM) grown inside a MEMS-fabricated μ-preconcentrator for sampling highly volatile organic compounds. An array of µ-pillars measuring 100 µm in diameter and 250 µm in height were fabricated inside a microfluidic channel to increase the attaching surface for the CMSM. The surface area of the CMSM was measured as high as 899 m2/g. A GC peak amplification factor >2 × 104 was demonstrated with gaseous ethyl acetate. Up to 1.4 L of gaseous ethanol at the 100 ppb level could be concentrated without exceeding the capacity of this microchip device. Sharp desorption chromatographic peaks (<3.5 s) were obtained while using this device directly as a GC injector. Less volatile compounds such as gaseous toluene, m-xylene, and mesitylene appeared to be adsorbed strongly on CMSM, showing a memory effect. Sampling parameters such as sample volatilities, sampling capacities, and compound residual issues were empirically determined and discussed.


2018 ◽  
Vol 39 (17) ◽  
pp. 2218-2227 ◽  
Author(s):  
Li-Jing Du ◽  
Jian-Ping Huang ◽  
Bin Wang ◽  
Chen-Hui Wang ◽  
Qiu-Yan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document