Finely Tuning Tridentate Carboxylic Acids for the Construction of Rod Scandium Metal–Organic Frameworks with High Chemical Stability and Selective Gas Adsorption

Author(s):  
Mingxing Zhang ◽  
Penghui Liu ◽  
Rui Dang ◽  
Lifang Zhang ◽  
Guomin Jiang ◽  
...  
2020 ◽  
Vol 7 (19) ◽  
pp. 3548-3554
Author(s):  
Keke Wang ◽  
Qunmin Wang ◽  
Xiong Wang ◽  
Mei Wang ◽  
Qin Wang ◽  
...  

Intramolecular hydrogen bonds in ligands restrict the rotation of carboxyl groups and consequently enhance the chemical stability of MOFs.


2019 ◽  
Vol 43 (10) ◽  
pp. 4092-4099 ◽  
Author(s):  
Jiong Xu ◽  
Jin Liu ◽  
Zhen Li ◽  
Xianbiao Wang ◽  
Yongfei Xu ◽  
...  

The optimized MOF-808 exhibited relatively high chemical stability and excellent hydrogen storage properties at different temperatures.


Author(s):  
Guang-Qing Wang ◽  
Jie-Fen Huang ◽  
Xiao-Feng Huang ◽  
Shu-Qi Deng ◽  
Sheng-Run Zheng ◽  
...  

A metal–organic framework (SCNU-Z4) with high chemical stability in water and common organic solvents showed ability for iodine and dye adsorption.


2020 ◽  
Author(s):  
Ali Raza ◽  
Arni Sturluson ◽  
Cory Simon ◽  
Xiaoli Fern

Virtual screenings can accelerate and reduce the cost of discovering metal-organic frameworks (MOFs) for their applications in gas storage, separation, and sensing. In molecular simulations of gas adsorption/diffusion in MOFs, the adsorbate-MOF electrostatic interaction is typically modeled by placing partial point charges on the atoms of the MOF. For the virtual screening of large libraries of MOFs, it is critical to develop computationally inexpensive methods to assign atomic partial charges to MOFs that accurately reproduce the electrostatic potential in their pores. Herein, we design and train a message passing neural network (MPNN) to predict the atomic partial charges on MOFs under a charge neutral constraint. A set of ca. 2,250 MOFs labeled with high-fidelity partial charges, derived from periodic electronic structure calculations, serves as training examples. In an end-to-end manner, from charge-labeled crystal graphs representing MOFs, our MPNN machine-learns features of the local bonding environments of the atoms and learns to predict partial atomic charges from these features. Our trained MPNN assigns high-fidelity partial point charges to MOFs with orders of magnitude lower computational cost than electronic structure calculations. To enhance the accuracy of virtual screenings of large libraries of MOFs for their adsorption-based applications, we make our trained MPNN model and MPNN-charge-assigned computation-ready, experimental MOF structures publicly available.<br>


2020 ◽  
Vol 124 (49) ◽  
pp. 26801-26813
Author(s):  
Dayton J. Vogel ◽  
Zachary R. Lee ◽  
Caitlin A. Hanson ◽  
Susan E. Henkelis ◽  
Caris M. Smith ◽  
...  

2016 ◽  
Vol 138 (10) ◽  
pp. 3371-3381 ◽  
Author(s):  
Yong Yan ◽  
Michal Juríček ◽  
François-Xavier Coudert ◽  
Nicolaas A. Vermeulen ◽  
Sergio Grunder ◽  
...  

ChemSusChem ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 1543-1553 ◽  
Author(s):  
Nicolas Chanut ◽  
Sandrine Bourrelly ◽  
Bogdan Kuchta ◽  
Christian Serre ◽  
Jong-San Chang ◽  
...  

2016 ◽  
Vol 52 (14) ◽  
pp. 3003-3006 ◽  
Author(s):  
Linyi Bai ◽  
Binbin Tu ◽  
Yi Qi ◽  
Qiang Gao ◽  
Dong Liu ◽  
...  

Incorporating supramolecular recognition units, crown ether rings, into metal–organic frameworks enables the docking of metal ions through complexation for enhanced performance.


Sign in / Sign up

Export Citation Format

Share Document