Imaging and Manipulating the Conversion from Single Cuprous Oxide Microparticles to Single Metal Hydroxide Microstructures

Author(s):  
Ling Yu ◽  
Jingyu Wang ◽  
Zheng Liu ◽  
Ying Lin ◽  
Wei Huang ◽  
...  
Author(s):  
Bradley L. Thiel ◽  
Chan Han R. P. ◽  
Kurosky L. C. Hutter ◽  
I. A. Aksay ◽  
Mehmet Sarikaya

The identification of extraneous phases is important in understanding of high Tc superconducting oxides. The spectroscopic techniques commonly used in determining the origin of superconductivity (such as RAMAN, XPS, AES, and EXAFS) are surface-sensitive. Hence a grain boundary phase several nanometers thick could produce irrelevant spectroscopic results and cause erroneous conclusions. The intergranular phases present a major technological consideration for practical applications. In this communication we report the identification of a Cu2O grain boundary phase which forms during the sintering of YBa2Cu3O7-x (1:2:3 compound).Samples are prepared using a mixture of Y2O3. CuO, and BaO2 powders dispersed in ethanol for complete mixing. The pellets pressed at 20,000 psi are heated to 950°C at a rate of 5°C per min, held for 1 hr, and cooled at 1°C per min to room temperature. The samples show a Tc of 91K with a transition width of 2K. In order to prevent damage, a low temperature stage is used in milling to prepare thin foils which are then observed, using a liquid nitrogen holder, in a Philips 430T at 300 kV.


2019 ◽  
Vol 7 (44) ◽  
pp. 25290-25296 ◽  
Author(s):  
Naoki Tarutani ◽  
Yasuaki Tokudome ◽  
Matías Jobbágy ◽  
Galo J. A. A. Soler-Illia ◽  
Masahide Takahashi

Hybridization of electrochemical functions derived from large hetero-interfaces by assembly of layered metal hydroxide nanoclusters.


Chemosensors ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 35
Author(s):  
Ahmed H. Naggar ◽  
Ahmed Kotb ◽  
Ahmed A. Gahlan ◽  
Mahmoud H. Mahross ◽  
Abd El-Aziz Y. El-Sayed ◽  
...  

Herein, a feasible chemical reduction method followed by intensive mixing was applied for the preparation of an attractive material based on graphite studded with cuprous oxide nanoparticle-based cubes (Cu2ONPs–C@G). Transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) were utilized for characterization. Cuprous oxide nanoparticles (Cu2ONPs), with a diameter range mainly distributed from 4 to 20 nm, aggregate to form microcubes (Cu2ONPs–C) with an average diameter of about 367 nm. Paste electrode was prepared using Cu2ONPs–C@G (Cu2ONPs–C@G/PE) for voltametric quantification of the musculotropic antispasmodic drug: mebeverine hydrochloride (MEB). The electrochemical behavior of MEB was studied using CV, and the optimum analytical parameters were investigated using square wave adsorptive anodic stripping voltammetry (SWAdASV). Moreover, density functional theory (DFT) was used to emphasize the ability of MEB to form a complex with Cu2+, confirming the suggested electrochemical behavior of MEB at Cu2ONPs–C@G/PE. With good stability and high reproducibility, SWAdASV of Cu2ONPs–C@G/PE shows successful quantification of MEB over the concentration range of 5.00 × 10−11–1.10 × 10−9 M with lower limit of detection (LOD) and lower limit of quantification (LOQ) values of 2.41 × 10−11 M and 8.05 × 10−11 M, respectively. Finally, accurate quantification of MEB in dosage forms (tablets) and biological fluids (spiked human urine and plasma samples) was achieved using Cu2ONPs-C@G/PE.


Author(s):  
Wenyu Gao ◽  
Xiaojing Zhou ◽  
Nina F. Heinig ◽  
Joseph P. Thomas ◽  
Lei Zhang ◽  
...  

2021 ◽  
Vol 395 ◽  
pp. 273-281
Author(s):  
Kang Zhang ◽  
Zizheng Ai ◽  
Meiling Huang ◽  
Dong Shi ◽  
Yongliang Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document