Negative Zero-Field-Cooled Magnetization in YMn0.5Cr0.5O3 due to Giant Coercivity and Trapped Field

2017 ◽  
Vol 57 (1) ◽  
pp. 175-180 ◽  
Author(s):  
Xiangnan Xie ◽  
Hailiang Che ◽  
Haoru Wang ◽  
Guankai Lin ◽  
Hong Zhu
Keyword(s):  
2000 ◽  
Vol 15 (6) ◽  
pp. 1231-1234 ◽  
Author(s):  
H. Walter ◽  
M. P. Delamare ◽  
B. Bringmann ◽  
A. Leenders ◽  
H. C. Freyhardt

CeO2-doped YBaCuO monoliths synthesized with a top-seeded melt growth process in a conventional box furnace exhibited values of trapped magnetic field of up to 1.33 T at 77 K. To our knowledge, this is the highest value of trapped field reported for a melt-textured YBaCuO monolith. A suitable temperature profile and the use of high-density Y2BaCuO5 substrates led to reproducible single-domain crack-free samples investigated by optical and scanning electron microscopy and trapped field measurements. The zero-field-cooled levitation forces at 77 K of standard samples amounted to 70–83 N. A transport critical current density of up to 1.3 × 105 A/cm2 in self field at 77 K was obtained.


Author(s):  
Yukai Qiao ◽  
Yinshun Wang ◽  
Xi Yuan ◽  
Guangyi Zhang ◽  
Wei Pi

High temperature superconducting (HTS) magnets have widespread applications in a strong and steady magnetic field at low temperature. However, they can not be operated in persistent current mode (PCM) due to their immature joint technique without resistance. In order to realize the PCM, an HTS magnet stacked by double-hole rectangular HTS plates was proposed and fabricated. The trapped field of the HTS magnet was measured and simulated under four kinds of magnetization methods, field cooling (FC), zero field cooling (ZFC) and inner magnetization (a solenoid is placed at right/left hole of double-hole rectangular HTS magnet to magnetize HTS magnet) as well as combination of both methods. Meanwhile, the H-formulation is applied to the 3D model to analyze the electromagnetic behaviour. It was found that the trapped field of double-hole rectangular HTS magnet magnetized by FC with inner magnetization or ZFC with inner magnetization is higher than pure FC or ZFC magnetization. In inner magnetization, the trapped field of one hole in HTS magnet has no effect on the other one. In addition, the experiment results are in good agreement with numerical analysis, which can provide significant references for the magnetization method.


Author(s):  
Z. L. Wang ◽  
C. L. Briant ◽  
J. DeLuca ◽  
A. Goyal ◽  
D. M. Kroeger ◽  
...  

Recent studies have shown that spray-pyrolyzed films of the Tl-1223 compound (TlxBa2Ca2Cu3Oy, with 0.7 < × < 0.95) on polycrystalline yttrium stabilized zirconia substrates can be prepared which have critical current density Jc near 105 A/cm2 at 77 K, in zero field. The films are polycrystalline, have excellent c-axis alignment, and show little evidence of weak-link behavior. Transmission electron microscopy (TEM) studies have shown that most grain boundaries have small misorientation angles. It has been found that the films have a nigh degree of local texture indicative of colonies of similarly oriented grains. It is believed that inter-colony conduction is enhanced by a percolative network of small angle boundaries at colony interfaces. It has also been found that Jc is increased by a factor of 4 - 5 after the films were annealed at 600 °C in oxygen. This study is thus carried out to determine the effect on grain boundary chemistry of the heat treatment.


2021 ◽  
Author(s):  
Júlia Mayans ◽  
Albert Escuer

A possible relation between the value of the axial Zero Field Splitting and the occurrence of field-induced slow magnetic relaxation has been established for a new gadolinium(iii) compound.


1979 ◽  
Vol 40 (C1) ◽  
pp. C1-335-C1-337 ◽  
Author(s):  
J. Carmeliet ◽  
J. C. Dehaes ◽  
W. Singer

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1373
Author(s):  
Fadis F. Murzakhanov ◽  
Boris V. Yavkin ◽  
Georgiy V. Mamin ◽  
Sergei B. Orlinskii ◽  
Ivan E. Mumdzhi ◽  
...  

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB−). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB− centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of D = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB− centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB− spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB− spin embedded in the hBN as a probe.


2021 ◽  
Author(s):  
Plinio Cantero-López ◽  
Yoan Hidalgo-Rosa ◽  
Zoraida Sandoval-Olivares ◽  
Julián Santoyo-Flores ◽  
Pablo Mella ◽  
...  

Rhenium tricarbonyl complexes are one of the most important classes of coordination compounds in inorganic chemistry. Exploring their luminescent excited states, lowest singlet (S1), and the lowest triplet (T1), is...


Sign in / Sign up

Export Citation Format

Share Document