Key Amino Residues Determining Binding Activities of the Odorant Binding Protein AlucOBP22 to Two Host Plant Terpenoids of Apolygus lucorum

2019 ◽  
Vol 67 (21) ◽  
pp. 5949-5956 ◽  
Author(s):  
Hangwei Liu ◽  
Hongxia Duan ◽  
Qi Wang ◽  
Yong Xiao ◽  
Qian Wang ◽  
...  
Author(s):  
Ran Wang ◽  
Yuan Hu ◽  
Peiling Wei ◽  
Cheng Qu ◽  
Chen Luo

Abstract Odorant binding proteins (OBPs) of insects play a critical role in chemical perceptions and choice of insect host plant. Bemisia tabaci is a notorious insect pest which can damage more than 600 plant species. In order to explore functions of OBPs in B. tabaci, here we investigated binding characteristics and function of odorant-binding protein 3 in B. tabaci (BtabOBP3). The results indicated that BtabOBP3 shows highly similar sequence with OBPs of other insects, including the typical signature motif of six cysteines. The recombinant BtabOBP3 protein was obtained, and the evaluation of binding affinities to tested volatiles of host plant was conducted, then the results indicated that β-ionone had significantly higher binding to BtabOBP3 among other tested plant volatiles. Furthermore, silencing of BtabOBP3 significantly altered choice behavior of B. tabaci to β-ionone. In conclusion, it has been demonstrated that BtabOBP3 exerts function as one carrier of β-ionone and the results could be contributed to reveal the mechanisms of choosing host plant in B. tabaci.


2013 ◽  
Vol 48 (3) ◽  
pp. 301-311 ◽  
Author(s):  
Ping Ji ◽  
Shao-Hua Gu ◽  
Jing-Tao Liu ◽  
Xiao-Qiang Zhu ◽  
Yu-Yuan Guo ◽  
...  

ACS Omega ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 3800-3811 ◽  
Author(s):  
Yuxin Zhang ◽  
Yanping Ren ◽  
Xiaolan Wang ◽  
Yong Liu ◽  
Ningxin Wang

2013 ◽  
Vol 59 (7) ◽  
pp. 690-696 ◽  
Author(s):  
Jin-Feng Hua ◽  
Shuai Zhang ◽  
Jin-Jie Cui ◽  
Dao-Jie Wang ◽  
Chun-Yi Wang ◽  
...  

2021 ◽  
Author(s):  
Hui Ai ◽  
Yuying Liu ◽  
Guangyan Long ◽  
Yuan Yuan ◽  
Shaopei Huang ◽  
...  

Abstract Insect olfaction system plays a key role in the foraging food, pollination, mating, oviposition, reproduction and other insect physiological behavior. Odorant binding protein are widely found in the various olfactory sensilla of different insect antennae and involved in chemical signals discrimination from natural environment. In this study, a novel OBP gene, MvitOBP3 is identified from the legume pod borer, Maruca vitrata, which it mainly harms important legume vegetables including cowpea, soybean and lablab bean. Real-time PCR results demonstrated that MvitOBP3 gene was abundantly expressed in the antennal tissue of M. vitrata, while low levels were distributed in the head, thorax, abdomen, leg and wing of adult moths. The recombinant OBP3 protein was purified using the prokaryotic expression and affinity chromatography system. Fluorescence competitive binding experiments indicated that that MvitOBP3 protein exhibited greater binding affinities with host-plant flower volatiles including Butanoic acid butyl ester, Limonene, 1H-indol-4-ol and 2-methyl-3-phenylpropanal, highlighting they may have attractant activities for the oviposition of female moths on the legume vegetables. Moreover, protein homology modeling and molecular docking analysis revealed that there are six amino acid sites of MvitOBP3 involved in the binding of the host-plant volatiles. These findings will further promote to understand the key role of odorant binding protein during host perception and oviposition of M. vitrata moths, which improve the efficiency of semiochemical-based prevention and monitoring for this pest in the legume vegetables field.


2021 ◽  
Author(s):  
Xiao‐Qiang Liu ◽  
Hong‐Bo Jiang ◽  
Jia‐Yao Fan ◽  
Tian‐Yuan Liu ◽  
Li‐Wei Meng ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui Ai ◽  
Yuying Liu ◽  
Guangyan Long ◽  
Yuan Yuan ◽  
Shaopei Huang ◽  
...  

AbstractInsect olfaction system plays a key role in the foraging food, pollination, mating, oviposition, reproduction and other insect physiological behavior. Odorant binding protein are widely found in the various olfactory sensilla of different insect antennae and involved in chemical signals discrimination from natural environment. In this study, a novel OBP gene, MvitOBP3 is identified from the legume pod borer, Maruca vitrata, which it mainly harms important legume vegetables including cowpea, soybean and lablab bean. Real-time PCR results demonstrated that MvitOBP3 gene was abundantly expressed in the antennal tissue of M. vitrata, while low levels were distributed in the head, thorax, abdomen, leg and wing of adult moths. The recombinant OBP3 protein was purified using the prokaryotic expression and affinity chromatography system. Fluorescence competitive binding experiments indicated that that MvitOBP3 protein exhibited greater binding affinities with host-plant flower volatiles including Butanoic acid butyl ester, Limonene, 1H-indol-4-ol and 2-methyl-3-phenylpropanal, highlighting they may have attractant activities for the oviposition of female moths on the legume vegetables. Moreover, protein homology modeling and molecular docking analysis revealed that there are six amino acid sites of MvitOBP3 involved in the binding of the host-plant volatiles. These findings will further promote to understand the key role of odorant binding protein during host perception and oviposition of M. vitrata moths, which improve the efficiency of semiochemical-based prevention and monitoring for this pest in the legume vegetables field.


Sign in / Sign up

Export Citation Format

Share Document