Fast Generation of Machine Learning-Based Force Fields for Adsorption Energies

Author(s):  
Saientan Bag ◽  
Manuel Konrad ◽  
Tobias Schlöder ◽  
Pascal Friederich ◽  
Wolfgang Wenzel
2019 ◽  
Author(s):  
Andrew Medford ◽  
Shengchun Yang ◽  
Fuzhu Liu

Understanding the interaction of multiple types of adsorbate molecules on solid surfaces is crucial to establishing the stability of catalysts under various chemical environments. Computational studies on the high coverage and mixed coverages of reaction intermediates are still challenging, especially for transition-metal compounds. In this work, we present a framework to predict differential adsorption energies and identify low-energy structures under high- and mixed-adsorbate coverages on oxide materials. The approach uses Gaussian process machine-learning models with quantified uncertainty in conjunction with an iterative training algorithm to actively identify the training set. The framework is demonstrated for the mixed adsorption of CH<sub>x</sub>, NH<sub>x</sub> and OH<sub>x</sub> species on the oxygen vacancy and pristine rutile TiO<sub>2</sub>(110) surface sites. The results indicate that the proposed algorithm is highly efficient at identifying the most valuable training data, and is able to predict differential adsorption energies with a mean absolute error of ~0.3 eV based on <25% of the total DFT data. The algorithm is also used to identify 76% of the low-energy structures based on <30% of the total DFT data, enabling construction of surface phase diagrams that account for high and mixed coverage as a function of the chemical potential of C, H, O, and N. Furthermore, the computational scaling indicates the algorithm scales nearly linearly (N<sup>1.12</sup>) as the number of adsorbates increases. This framework can be directly extended to metals, metal oxides, and other materials, providing a practical route toward the investigation of the behavior of catalysts under high-coverage conditions.


2021 ◽  
Author(s):  
Tom Young ◽  
Tristan Johnston-Wood ◽  
Volker L. Deringer ◽  
Fernanda Duarte

Predictive molecular simulations require fast, accurate and reactive interatomic potentials. Machine learning offers a promising approach to construct such potentials by fitting energies and forces to high-level quantum-mechanical data, but...


2021 ◽  
Author(s):  
Xiangyun Lei ◽  
Andrew Medford

Abstract Molecular dynamics simulations are an invaluable tool in numerous scientific fields. However, the ubiquitous classical force fields cannot describe reactive systems, and quantum molecular dynamics are too computationally demanding to treat large systems or long timescales. Reactive force fields based on physics or machine learning can be used to bridge the gap in time and length scales, but these force fields require substantial effort to construct and are highly specific to a given chemical composition and application. A significant limitation of machine learning models is the use of element-specific features, leading to models that scale poorly with the number of elements. This work introduces the Gaussian multipole (GMP) featurization scheme that utilizes physically-relevant multipole expansions of the electron density around atoms to yield feature vectors that interpolate between element types and have a fixed dimension regardless of the number of elements present. We combine GMP with neural networks to directly compare it to the widely used Behler-Parinello symmetry functions for the MD17 dataset, revealing that it exhibits improved accuracy and computational efficiency. Further, we demonstrate that GMP-based models can achieve chemical accuracy for the QM9 dataset, and their accuracy remains reasonable even when extrapolating to new elements. Finally, we test GMP-based models for the Open Catalysis Project (OCP) dataset, revealing comparable performance to graph convolutional deep learning models. The results indicate that this featurization scheme fills a critical gap in the construction of efficient and transferable machine-learned force fields.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Pascal Friederich ◽  
Manuel Konrad ◽  
Timo Strunk ◽  
Wolfgang Wenzel

2019 ◽  
Vol 59 (10) ◽  
pp. 4278-4288 ◽  
Author(s):  
James L. McDonagh ◽  
Ardita Shkurti ◽  
David J. Bray ◽  
Richard L. Anderson ◽  
Edward O. Pyzer-Knapp

2019 ◽  
Vol 240 ◽  
pp. 38-45 ◽  
Author(s):  
Stefan Chmiela ◽  
Huziel E. Sauceda ◽  
Igor Poltavsky ◽  
Klaus-Robert Müller ◽  
Alexandre Tkatchenko

Sign in / Sign up

Export Citation Format

Share Document