Identification of Small Molecule Inhibitors of RNase L by Fragment-Based Drug Discovery

Author(s):  
Jinle Tang ◽  
Beihua Dong ◽  
Ming Liu ◽  
Shuyan Liu ◽  
Xiaogang Niu ◽  
...  
2017 ◽  
Author(s):  
Daniel Croft ◽  
Stuart Francis ◽  
Justin Bower ◽  
Andrea Gohlke ◽  
Gillian Goodwin ◽  
...  

2016 ◽  
Vol 59 (2) ◽  
pp. 671-686 ◽  
Author(s):  
Stephan G. Zech ◽  
Anna Kohlmann ◽  
Tianjun Zhou ◽  
Feng Li ◽  
Rachel M. Squillace ◽  
...  

2020 ◽  
Vol 117 (40) ◽  
pp. 24802-24812 ◽  
Author(s):  
Salima Daou ◽  
Manisha Talukdar ◽  
Jinle Tang ◽  
Beihua Dong ◽  
Shuvojit Banerjee ◽  
...  

The oligoadenylate synthetase (OAS)–RNase L system is an IFN-inducible antiviral pathway activated by viral infection. Viral double-stranded (ds) RNA activates OAS isoforms that synthesize the second messenger 2-5A, which binds and activates the pseudokinase-endoribonuclease RNase L. In cells, OAS activation is tamped down by ADAR1, an adenosine deaminase that destabilizes dsRNA. Mutation of ADAR1 is one cause of Aicardi-Goutières syndrome (AGS), an interferonopathy in children. ADAR1 deficiency in human cells can lead to RNase L activation and subsequent cell death. To evaluate RNase L as a possible therapeutic target for AGS, we sought to identify small-molecule inhibitors of RNase L. A 500-compound library of protein kinase inhibitors was screened for modulators of RNase L activity in vitro. We identified ellagic acid (EA) as a hit with 10-fold higher selectivity against RNase L compared with its nearest paralog, IRE1. SAR analysis identified valoneic acid dilactone (VAL) as a superior inhibitor of RNase L, with 100-fold selectivity over IRE1. Mechanism-of-action analysis indicated that EA and VAL do not bind to the pseudokinase domain of RNase L despite acting as ATP competitive inhibitors of the protein kinase CK2. VAL is nontoxic and functional in cells, although with a 1,000-fold decrease in potency, as measured by RNA cleavage activity in response to treatment with dsRNA activator or by rescue of cell lethality resulting from self dsRNA induced by ADAR1 deficiency. These studies lay the foundation for understanding novel modes of regulating RNase L function using small-molecule inhibitors and avenues of therapeutic potential.


2011 ◽  
Vol 14 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Isaac M. Westwood ◽  
Akane Kawamura ◽  
Angela J. Russell ◽  
James Sandy ◽  
Stephen G. Davies ◽  
...  

2018 ◽  
Vol 114 (3) ◽  
pp. 30a-31a ◽  
Author(s):  
Andrea Gohlke ◽  
Justin Bower ◽  
Peter N. Brown ◽  
Ken S. Cameron ◽  
Martin Drysdale ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4016
Author(s):  
Blake Rushing ◽  
Denise Rohlik ◽  
Sourav Roy ◽  
D. Skaff ◽  
Brandon Garcia

The initiating protease of the complement classical pathway, C1r, represents an upstream and pathway-specific intervention point for complement-related autoimmune and inflammatory diseases. Yet, C1r-targeted therapeutic development is currently underrepresented relative to other complement targets. In this study, we developed a fragment-based drug discovery approach using surface plasmon resonance (SPR) and molecular modeling to identify and characterize novel C1r-binding small-molecule fragments. SPR was used to screen a 2000-compound fragment library for binding to human C1r. This led to the identification of 24 compounds that bound C1r with equilibrium dissociation constants ranging between 160–1700 µM. Two fragments, termed CMP-1611 and CMP-1696, directly inhibited classical pathway-specific complement activation in a dose-dependent manner. CMP-1611 was selective for classical pathway inhibition, while CMP-1696 also blocked the lectin pathway but not the alternative pathway. Direct binding experiments mapped the CMP-1696 binding site to the serine protease domain of C1r and molecular docking and molecular dynamics studies, combined with C1r autoactivation assays, suggest that CMP-1696 binds within the C1r active site. The group of structurally distinct fragments identified here, along with the structure–activity relationship profiling of two lead fragments, form the basis for future development of novel high-affinity C1r-binding, classical pathway-specific, small-molecule complement inhibitors.


Sign in / Sign up

Export Citation Format

Share Document