Discovery of the Streptoketides by Direct Cloning and Rapid Heterologous Expression of a Cryptic PKS II Gene Cluster from Streptomyces sp. Tü 6314

2019 ◽  
Vol 85 (2) ◽  
pp. 664-673 ◽  
Author(s):  
Zhengyi Qian ◽  
Torsten Bruhn ◽  
Paul M. D’Agostino ◽  
Alexander Herrmann ◽  
Martin Haslbeck ◽  
...  
ChemBioChem ◽  
2012 ◽  
Vol 13 (13) ◽  
pp. 1946-1952 ◽  
Author(s):  
Xiaoying Bian ◽  
Fan Huang ◽  
Francis A. Stewart ◽  
Liqiu Xia ◽  
Youming Zhang ◽  
...  

2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


2013 ◽  
Vol 56 (7) ◽  
pp. 619-627 ◽  
Author(s):  
JinE Li ◽  
ZhengYan Guo ◽  
Wei Huang ◽  
XiangXi Meng ◽  
GuoMin Ai ◽  
...  

Author(s):  
Bidhan Chandra De ◽  
Wenjun Zhang ◽  
Guangtao Zhang ◽  
Zhiwen Liu ◽  
Bin Tan ◽  
...  

Berninamycins are a class of thiopeptide antibiotics with potent activity against Gram-positive bacteria. Heterologous expression of the berninamycin (ber) biosynthetic gene cluster from marine-derived Streptomyces sp. SCSIO 11878 in different...


Author(s):  
Reiko Ueoka ◽  
Junko Hashimoto ◽  
Ikuko Kozone ◽  
Takuya Hashimoto ◽  
Kei Kudo ◽  
...  

ABSTRACT A novel methymycin analog, 12-ketomethymycin N-oxide, was produced by the heterologous expression of the pikromycin/methymycin biosynthetic gene cluster of Streptomyces sp. AM4900 together with 12-ketomethymycin, which was only isolated by the biotransformation of the synthetic intermediate before. Their structures were determined by the spectroscopic data and the chemical derivatization. 12-Ketomethymycin showed a weak cytotoxicity against SKOV-3 and Jurkat cells, although its N-oxide analog did not show any activity. Both showed no antibacterial activities against Escherichia coli and Micrococcus luteus.


2018 ◽  
Vol 81 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Teppei Kawahara ◽  
Miho Izumikawa ◽  
Ikuko Kozone ◽  
Junko Hashimoto ◽  
Noritaka Kagaya ◽  
...  

2006 ◽  
Vol 72 (5) ◽  
pp. 3738-3742 ◽  
Author(s):  
Lianrong Wang ◽  
Shi Chen ◽  
Xiang Xiao ◽  
Xi Huang ◽  
Delin You ◽  
...  

ABSTRACT In the arsenic resistance gene cluster from the large linear plasmid pHZ227, two novel genes, arsO (for a putative flavin-binding monooxygenase) and arsT (for a putative thioredoxin reductase), were coactivated and cotranscribed with arsR1-arsB and arsC, respectively. Deletion of the ars gene cluster on pHZ227 in Streptomyces sp. strain FR-008 resulted in sensitivity to arsenic, and heterologous expression of the ars gene cluster in the arsenic-sensitive Streptomyces strains conferred resistance on the new hosts. The pHZ227 ArsB protein showed homology to the yeast arsenite transporter Acr3p. The pHZ227 ArsC appears to be a bacterial thioredoxin-dependent ArsC-type arsenate reductase with four conserved cysteine thioredoxin-requiring motifs.


Sign in / Sign up

Export Citation Format

Share Document